K. K. Wagh Institute of Engineering Education and Research, Nashik (Autonomous wef AY 2022-23)

Structure and Syllabus of T.Y. B. Tech (Chemical Engineering)

Pattern: 2022 (wef AY 2022-23) • Summary of Credits and Total Marks for U.G.Programme :

Definition of Credit :

• Abbreviations : TH : Theory PR : Practical TU : Tutorial OR : Oral CCE: Continuous Comprehensive Evaluation TW:Termwork	The Under Graduate (U.G.) and Post Graduate (P.G.) programmes will have credit system. The details of credit will be as follow 1 Credit = 1 hour/week for lecture = 2 hours/week for practical = 1 hour /week for tutorial
---	--

• Description of various Courses:

1

Type of Course	Description	Type of Course	Description
ESC	Engineering Science Course - Workshop -Drawing- Fundamentals of different branches	DCC	Department Core Course
BSC	Basic Science Courses	DEC	Department Elective Course
IUSM	Liberal arts, Humanities, Social Sciences and Management	OEC	Open Elective Courses of other technical or emerging
	courses	OLC	areas /Courses designed by Industry
PSI	Project work, Seminar, Internship, PBL	IMC	Induction and Mandatory Courses
NC /AC	Non Credit Courses /Audit Courses	ASM	Additional Specialized / MOOCs

Pattern of Course: 2022

Branch: Chemical Engineering

	T.Y.B.Tech Chemical Engineering wef AY 2024-25																
	SEM-V																
Course Cours	Course	e Title of Course	Te S	Teaching Scheme		Evaluation Scheme and Marks						Credits					
Code	Туре		ТН	TU	PR	INSEM	ENDSEM	CCE	TUT	TW	PR	OR	TOTAL	TH	TU	PR	TOTAL
CHE223001	DCC	Mass Transfer I	3	-	-	20	60	20	-	-	I	-	100	3	-	-	3
CHE223002	DCC	Chemical Reaction Engineering I	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
CHE223003	DCC	Process Equipment Design	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
CHE223004	DCC	Lab Work in Mass Transfer I	-	-	2	-	-	-		25	25	-	50	-	-	1	1
CHE223005	DCC	Lab Work in Chemical Reaction Engineering I	-	-	2	-	-	-	-	25	25	-	50	-	-	1	1
CHE223006	DEC	Elective I	3	-	-	20	60	20					100	3	-	-	3
CHE223007	DEC	Lab Work in Elective I	-	-	2	-	-	-		25		25	50	-	-	1	1
CHE223008	OEC	IPR and Patents	2	-	-	-	-	50	-	-	-	-	50	2	-	-	2
CHE223009	ESC	Piping Design and Engineering	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
CHE223010	PSI	Seminar	-	1	2	<u>- 25 25 - - 50 - 1 1 2</u>								2			
Total hours	/marks/	credits	17	01	08	100	300	150	25	100	50	25	750	17	1	4	22

Elective I		Lab Work in Elective I				
CHE223006A	Chemical Process Industries	CHE223007A	Chemical Process Industries			
CHE223006B	Artificial Intelligence	CHE223007B	Artificial Intelligence			

K. K. Wagh Institute of Engineering Education and Research, Nasik (Autonomous w.e.f. A.Y.2022-23)

Pattern of Course: 2022

Branch: Chemical Engineering

	T.Y.B.Tech Chemical Engineering wef AY 2024-25																
	SEM-VI																
Course Cou	Course	Title of Course	To S	Teaching Scheme		Evaluation Scheme and Marks					Credits						
Code	Туре		ТН	TU	PR	INSEM	ENDSEM	CCE	TUT	TW	PR	OR	TOTAL	ТН	TU	PR	TOTAL
CHE223011	DCC	Mass Transfer II	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
CHE223012	DCC	Chemical Reaction Engineering II	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
CHE223013	DCC	Lab Work in Mass Transfer II	-	-	2	-	-	-	-	25	25	-	50	-	-	1	1
CHE223014	DEC	Elective II	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
CHE223015	DEC	Elective III	3	-	-	20	60	20	-		-	-	100	3	-	-	3
CHE223016	DEC	Lab Work in Elective II	-	-	2	-	-	-	-	25		25	50	-	-	1	1
CHE223017	ESC	Process Instrumentation	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
CHE223018	OEC	Optimization Techniques	2	-	-	-	-	50	-		-	-	50	2	-	-	2
CHE223019	ASM	Computer Aided Chemical Engineering	-	1	2	-	-	-	25		25	-	50	-	1	1	2
CHE223020	PSI	Project Phase I	-	-	2	-	-	-		50	-	-	50	-	-	1	1
Total hours/1	marks/cree	lits	17	01	08	100	300	150		125	50	25	750	17	1	4	22

Elective II		Lab Work in El	ective II	Elective III			
CHE223014A	Renewable Energy	CHE223016A	Renewable Energy	CHE223015A	Heat Transfer Operations		
CHE223014B	Chemical Process Synthesis	CHE223016B	Chemical Process Synthesis	CHE223015B	Food Technology		

Semester V (TY - B. Tech.) Chemical Engineering								
CHE223001: Mass Transfer I								
Teach	ing Scheme:	Credit Scheme:3	Examination scheme:					
Theory	y: 3 hrs/week		In Semester Exam: 20 marks					
			End Semesters Exam: 60 mark	S abustians 20 martia				
			Total: 100 Marks	aluation: 20 marks				
Prereat	uisite: Fundan	l nental Knowledge of P	rocess Calculations Thermody	namics and Unit				
operatio	ons in Chemica	l Engineering						
Course	Objectives:	0						
1. To	acquire basic	understanding of the g	general principles and theories of	of Mass Transfer				
ope	erations used in	Chemical industries.						
2. To	apply the know	vledge in the design of	Mass transfer operations for the	e separation.				
3. 10	be able to op	perate the various man	ss transfer operations such as	Gas absorption,				
	Outcomes: O	\mathbf{p} completion of the co	rying in Chemical process indus	stries.				
Sr			tromes	Bloom's				
No.		Course Out	t comes	Level				
COI	To apply the	general principles of I	Mass Transfer and theories of	3-Apply				
	mass transfer operations in chemical process industries.							
CO2	CO2 Select and design of the gas-liquid contact Mass Transfer							
	equipments an	nd acquire the understand	nding of their principles.					
CO3	Separate the	gas mixtures based o	in solubility of gas solute in	3-Apply				
	Apply the	principles of humidi	n. fication debumidification	3 Apply				
CO4	operations and	d design of cooling tow	vers	J-Apply				
	Illustrate the t	principles and mechanis	sm of drying and design the	6-Create				
CO5	various dryers	s based on the application	ons.					
	· · · ·	Course	e Contents:					
Unit 1	Introduction	n (L07)	COs Mapped: C	201				
Genera	al principles of	f Mass Transfer, classi	fication of Mass Transfer Open	rations, choice of				
separat	tion method,	methods of conductin	g mass transfer operations, d	esign principles.				
Diffusi	ion Mass Trans	ster, Molecular Diffusion	on in gases and liquids, diffusion is	ities of gases and				
state m	, types of diffu	ISION, FICK S and Maxw	ts in laminar flow and turbulent	flow theories of				
mass f	ransfer mass	heat and momentum	transfer analogies Inter-phase	se mass transfer				
equilib	rium in ma	ss transfer. the two	o resistance theory. continu	ious co-current.				
counte	rcurrent and cr	osscurrent processes, c	ascades.	, , , , , , , , , , , , , , , , , , ,				
Unit 2	Gas Absorpti	on (L08)	COs Mapped: C	CO2				
Mechar	nism of gas at	osorption, equilibrium	in gas absorption, application	of mass transfer				
theories to absorption, absorption in wetted wall columns, values of transfer coefficient,								
absorpt	ion in packed	tower and spray tower,	, calculation of HETP, HTU, N	TU, calculations				
of heig	of height of packed and spray tower. Absorption in tray towers, absorption and stripping							
chemics	tactors, tray efficiencies, calculation of number of trays for absorption, absorption with chemical reaction							
Unit 3	Unit 3 Humidification and Dehumidification (L07) COs Manned: CO3							
Princip	les, Vapour-lia	uid equilibria, enthalpy	of pure substances, basic defin	ition of all				
P	,		1					

2

3

Group Presentation on Unit-5

LMS Test on Each Unit

humidification terms, wet bulb temperature relation, psychrometric chart, Lewis relation, methods of humidification and dehumidification, equipment like cooling towers, tray towers, spray chambers, spray ponds, cooling tower design – HTU, NTU concept, calculation of height of cooling tower.

Unit 4 Equip	nent for gas liquid operation (L07)	COs Mapped:	CO4					
Types of colur	Types of columns, Types of trays, types of packing, Gas dispersal equipment - bubble							
columns, mecha	inically agitated vessels, tray towers. Liqui	id dispersal equi	pment – Venturi					
scrubbers, wette	d wall columns, spray towers, packed colum	nns						
Unit 5 Drying	(L07)	COs Mapped:	CO5					
Principles, equi	librium in drying, type of moisture bindi	ng, mechanism	of batch drying,					
continuous dry	ng, time required for drying, mechanism	of moisture mo	vement in solid,					
design principle	es of tray dryer, rotary dryer, drum dryer	, spray dryer, fl	uidized bed and					
spouted bed dry	er, pneumatic dryer and vacuum dryer.							
REFERENCE	BOOKS:							
1. Mass Trans	fer Operations, Treybal R.E., McGraw Hill,	3 rd Edition.						
2. Chemical E	ngineering, Vol I & II, Coulson J.M. and R	ichardson J.F., N	AcGraw Hill, 6 th					
Edition.								
3. Principles of	f Unit Operations, Wiley Student Edition, 2	nd Edition.						
4. Separation	Processes, C. Judson King, 2 nd Edition.							
5. Design of H	quilibrium Stage Processes, Buford D.Smitl	n, McGraw Hill.						
6. Unit Opera	ions of Chemical Engineering, W. L. McCa	be, J. C. Smith a	nd Peter Harriott,					
McGraw H	III, 7 th Edition.							
Guidelines for Continuous Comprehensive Evaluation of Theory Course								
Sr. Co	mponents for Continuous Comprehensive	e Evaluation	Marks					
No.			Allotted					
1 Three	1Three Assignments on unit-1, Unit-2, Unit-3 & 410							

05

05

20

Total

Semester V (TY - B. Tech.) Chemical Engineering									
	СН	E223002: Chemica	l Reaction Enginee	ering I					
Teachi	ng Scheme:	Credit Scheme:3	Examination scheme:						
Theory	3 hrs/week		In Semester Exam: 20	marks					
			End Semesters Exam:	60 marks					
			Continuous Comprehen	nsive Evaluation: 20 marks					
			Total: 100 Marks						
Prerequ yield.	Prerequisite: Concept of order of reaction, Molecularity, rate of reaction, conversion and vield.								
Course	Objectives:								
1. T	o understand	concepts of rate equation	on and types of reaction	S					
2. T	o determine l	kinetics and design reac	tor						
3. T	'o analyze ten	nperature effects and de	viations from ideality						
Course	Outcomes: O	n completion of the cou	urse, learner will be able	e to:-					
Sr. No.		Course Outcon	nes	Bloom's Level					
CO1	Understand	rate equation and its re-	epresentation for given	2- Understand					
	reaction.								
CO2	Analyze kii	netic data based on met	hods of analysis.	4-Analyze					
CO3	Apply perfe	ormance equations to d	letermined kinetics for	3-Apply					
0.05	given react	ion.							
CO4	Understand	different multiple rea	actions and determine	2- Understand					
	product dis	tribution							
CO5	Analyze dev	iations from ideality and	plot different curves	4-Analyze					
T T •4 •1	T (1 ()	Course	Contents:	00 M 1 CO1					
Unit I	Introduction	to chemical kinetics (COs Mapped: COI					
Defining	a rate equati	on and its representatio	n, single and multiple r	eactions, elementary and					
non-elen	nentary reacti	ons, molecularity and o	order of reactions, rate	controlling step, relation					
between	concentration	and conversion, conce	ept of fractional change	e în volume, temperature					
Unit 2	Chamical Lin	listalli nation modelling of has	tah waaataw (T 00)	COg Mannadi CO2					
Datah ra	Chemical Ki	analysis of total pros	un reactor (LUS)	differential methods for					
balch re	of lyingtic det	analysis of total press	sure data, integral and	amerendar methods for					
anarysis	of Killetic dat	a, fail-life inethod for	analysis of kinetic dat	a, zero order, first order,					
autocatal	biller reactions	iis ioi constant and v	variable volume system	iis, reversible reactions,					
Unit 3	Popetor dosi	gn (I 07)		COc Manned: CO3					
Concept	of space time	and snace velocity ne	rformance equation of	batch reactor continuous					
stirred t	ank reactor	and plug flow reactor	r reactors in series a	and narallel concept of					
Surreu tank reactor and plug now reactor, reactors in series and parallel, concept of Damkobler number in reactor design									
Unit 4	Multiple rea	ctions (L07)		COs Mapped: CO4					
Types of	f multiple rea	ctions, qualitative and	quantitative discussion	for multiple reactions in					
terms of product distribution for different reactors, instantaneous and overall fractional vield									
Unit 5	Temperatur	e effects and deviation	ns from ideal reactor	COs Mapped: CO5					
Tempera	ture depender	ncy from various theor	ies Residence Time Di	istribution (RTD) FCF					
curves an	nd relation be	tween them. Models fo	r non-ideal reactions, d	ispersion model, tanks in					
series mo	odel, segregat	ed flow model							

REFERENCE BOOKS:

- 1. Chemical Reaction Engineering, Octave Levenspiel, Wiley, 3rd Edition.
- 2. Chemical Engineering Kinetics, J. M.Smith, McGraw-Hill Education, 3rd Edition.
- 3. Elements of Chemical Reaction Engineering, H. Scott, Fogler. Prentice Hall India
- Learning Private Limited, 4th Edition.

	Guidelines for Continuous Comprehensive Evaluation of Theory Course								
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted							
1	Three Assignments on unit-1, Unit-2, Unit-3 & 4	10							
2	Group Presentation on Unit-5	05							
3	LMS Test on Each Unit	05							
	Total	20							

г

Semester V (TY - B. Tech.) Chemical Engineering								
		CHE223003: Proc	ess Equipment Design					
Teachi	ng Scheme:	Credit Scheme:3	Examination scheme:					
Theory	: 3 hrs/week		In Semester Exam: 20 mark	KS				
			End Semesters Exam: 60 m	arks				
			Continuous Comprehensive	Evaluation: 20 marks				
	Total: 100 Marks							
Prerequ	Prerequisites: Basic concepts of Design and unit operations in Chemical Engineering.							
Course	Objectives:							
1. To a	acquire basic	understanding of desig	in parameters in process and	Mechanical Design				
of e	quipment's in	Chemical Engineering.						
2. To c	lesign mechan	ical aspects of various p	rocess vessels and their suppo	rts used in chemical				
Eng	ineering.	an various haat avahana	ing aquinments					
$\begin{array}{c} 5. \ 108 \\ \mathbf{Course} \end{array}$	Outcomes: O	gn various near exchange	urse learner will be able to:					
Sr No		Course Out	comos	Bloom's Loval				
51. 140.	A aquina haai	Course Out	sign nonemators in process	2-understand				
CO1	and Mechan	ical Design of distillation	on column.	2-understand				
CO2	Classify and	design of various proce	ess vessels and its	4-Analyze				
CO3	Design of st		accels and their symmetry	A-Analyze				
0.05	Design of sto	brage and tall vertical v	essels and their supports	4-Allalyze				
CO4	and reaction	vessels with heat exchange	ange provision.	0-Cleale				
CO5	Apply know	ledge to design differen	at types of heat exchangers	3-Apply				
	in chemical	industry.	Contonta					
Unit 1	Design of	Course distillation column (LOZ	7)	COs Manned: CO1				
Design	veriebles in	distillation Chaises of	f platas or peaking design	mathada for hinary				
Systems	vallables III	nev approximate colu	m sizing plate contactors	and plate hydraulic				
design	Packed colu	m design procedure	nacked bed height (distillati	ion and absorption)				
HTU. (Cornell's meth	nod. Onda's method. c	olumn diameter, column inte	ernals, wetting rates.				
column	auxiliaries.							
Unit 2	Design of 1	Pressure Vessels (L08)		COs Mapped: CO2				
Introduc	tion, types of	f pressure vessels, proj	portioning of pressure vesse	ls, selection of L/D				
ratio, op	timum propoi	tions, codes and standa	irds for pressure vessels (IS:	2825), design stress,				
design c	riteria, desigr	n of shell (spherical and	d cylindrical), design of diff	erent types of heads				
and close	ures, design o	of flanges and nozzles, of	compensation for openings a	nd branches. Design				
of pressu	of pressure vessels subjected to external pressure.							
Design of High Pressure Vessel; Materials of construction, stresses in thick cylinder, pre								
stressing of thick walled vessels, analysis and design of high pressure vessels including shell								
and head with stress distribution.								
Unit 3	Designs of	of Storage Vessels and '	Tall Vertical Vessels (L07)	COs Mapped: CO3				
Study of	f various typ	bes of storage vessels,	vessels for storing volatil	e and non-volatile				
liquids, s	storage of gas	es, Horton sphere, Loss	ses in storage vessels, Variou	is types of roofs for				
storage v	vessels, Desig	n of cylindrical storage	e vessels as per API-650 and	IS: 803 codes and				
specifica	tion; design	ot base plates, shell pl	ates, root plates, wind girde	ers, curb angles for				

self supporting and column supported roofs. Design of Tall Vessels: Stresses in the shell, shell design, vessel supports- introduction and classification of supports, design of skirt supports design of base plate, skirt bearing plate, anchor bolts, bolting chairs and skirt shell plates Design of saddle supports, ring stiffeners. Unit 4 **Design of Agitators and Reaction vessels (L07) COs Mapped: CO4** Agitators, their selection, applications, baffling, agitator shaft diameter calculations which includes twisting moment, equivalent bending moment, power requirement calculations for agitation systems, Power Curve, Reaction vessels: Heat Transfer aspects in the design of vessels, study and design of various types of jackets like plain, half coil, channel, limpet oil, study and design of internal coil reaction vessels, heat transfer coefficients in coils. **COs Mapped: CO5** Unit 5 **Design of Heat Exchange Equipments (L07)** Shell and tube heat exchanger- General design considerations; Thermal design and Mechanical design of shell and tube heat exchangers, Codes and standards for design; BS, IS: 4503 and TEMA, Design of double pipe heat exchanger. Plate heat exchanger: design procedure, Evaporators: classification, criteria for selection, design of Calendria type evaporator, Concept of Falling Film Evaporator, Condensers: heat transfer fundamentals, condensation outside horizontal tubes, condensation inside and outside vertical tubes, condensation inside horizontal tubes, and condensation of mixtures. Reboilers: types, selection, boiling heat transfer fundamentals, estimation of boiling heat transfer coefficients. **REFERENCE BOOKS:** 1. Process Equipment Design, V. V. Mahajani and S. B. Umarji, Laxmi Publications, 5th Edition. 2. Process Equipment Design, Brownell Young, Wiley. 3. Chemical Engineering Vol.6, J.M. Coulson, J.F. Richardson and R.K. Sinott, Butterworth-Heinemann Ltd, 2nd Edition. 4. Introduction to Chemical Equipment Design: Mechanical Aspects, B.C. Bhattacharva. C.B.S. Publications.. 5. Code for unfired pressure vessels, Bureau of Indian standards, IS – 2825 (1969). 6. Chemical Process Equipment-Selection and Design, James R. Couper, W. Roy Penney, James R. Fair, Butterworth-Heinemann, 3rd Edition. 7. Ludwig's Applied Process Design for Chemical and Petrochemical Plants: 1, A. Kayode, Coker, Gulf Professional Publishing, 4th Edition. **Guidelines for Continuous Comprehensive Evaluation of Theory Course Components for Continuous Comprehensive Evaluation** Sr. Marks No. Allotted 1 Three assignments on unit-1, unit-2, unit-3 & 4 10 2 Group presentation on Unit-5 05 LMS Test on each Unit 3 05 Total 20

Semester V (TY - B. Tech.) Chemical Engineering								
	CHE22	3004: Lab work in Ma	ass Transfer I	_				
Teachi	ng Scheme:	Credit Scheme:1	Examination sch	eme:				
Practica	al: 2 Hrs. /Week		TW: 25 marks					
			Practical: 25 mark	CS				
			Total: 50 Marks					
Prereq	Prerequisite: Fundamental Knowledge of Process Calculations, Thermodynamics and Unit							
operatio	ons in Chemical Enginee	ering						
Course	Objectives:							
1. 7	o acquire basic unders	tanding of the general pr	inciples and theorie	s of Mass Transfer				
0	perations used in Chemi	ical industries.						
2. 7	To apply the knowledge	in the design of Mass trans	fer operations for the	e separation.				
3. 7	To be able to operate	the various mass transfe	er operations such	as Gas absorption,				
H	Iumidification, Dehumic	lification and Drying in Cl	nemical process indu	stries.				
Course	Outcomes: On completi	ion of the course, learner w	vill be able to:-	1				
Sr. No.		Course Outcomes		Bloom's Level				
CO1	To apply the general	principles of Mass Trans	fer and theories of	3-Apply				
	mass transfer operation	s in chemical process indu	stries.					
CO2	Select and design of	of the gas-liquid conta	ct Mass Transfer	6-Create				
equipments and acquire the understanding of their principles.								
CO3	3-Apply							
selective solvent using gas absorption.								
CO4	Apply the principles of	humidification – dehumid	lification operations	3- Apply				
04	and design of cooling towers							
CO5	Illustrate the principle	s and mechanism of dry	ing and design the	6-Create				
0.05	various dryers based on	the applications.						
	Sugge	ested List of Laboratory A	Assignments:					
Any eig	sht practical's to be perfo	ormed out of the following	:					
Sr. No	L	aboratory Experiments		COs Mapped				
1.	Tray Dryer – To calcula	ate the rate of Batch Dryin	g	CO1, CO5				
2.	Rotary Dryer – To stud	ly the Characteristics of Ro	otary Dryer	CO1, CO5				
3.	Spray Dryer – To stu	dy the design and Opera	ting Principles of	CO1, CO5				
	Spray Dryer							
4.	Fluidized Bed Dryer –	To study the characteristic	s of Fluidized bed	CO1, CO5				
	Dryer							
5.	Liquid Diffusion – To	o calculate the Diffusion	Coefficient for a	CO1, CO5				
	liquid –liquid system							
6.	Winkelmann's method	 To find the diffusion Co 	efficient of vapour	CO1, CO2				
	in air by experimental r	method						
7.	Enhancement Factor	– To find the enhanc	ement factor for	CO1, CO2, CO3				
	absorption with and with	thout chemical reaction						
8.	8. Mass transfer Coefficient – To determine the Mass Transfer CO1, CO2, CO3							
	Coefficient for Absorption in a Packed Tower							
9.	Cooling Tower- To stu	dy the characteristics		CO1, CO2, CO4				
10.	Humidifier and Dehum	idifier – To study the Char	racteristics	CO1, CO2, CO4				
11.	Interphase Mass Trans	fer Coefficient – To calcu	late the individual	CO1, CO2				
	and overall Mass Trans	fer Coefficient						

12. Wetted Wall Column – To find the mass transfer coefficient in a CO1, CO2, CO3
wetted wall Column
Guidelines for Laboratory Conduction
• Teacher will brief the given experiment to students with its procedure, observations,
calculation, and outcome of the experiment.
• Apparatus and equipments required for the allotted experiment will be provided by the lab
assistants using SOP.
• Students will perform the allotted experiment in a group under the supervision of faculty and
lab assistant.
• After performing the experiment, students will perform calculations based on the obtained
readings and get it verified from the teacher.
• Students will then complete the experimental write up.
Guidelines for Student's Lab Journal
Write-up should include title, aim, diagram, working principle, procedure, observations, graphs,
calculations, results, conclusions, etc.
Guidelines for Termwork Assessment
1. Each experiment from lab journal is assessed for 30 marks based on three rubrics.
2. Rubric R-1 is for timely completion, R-2 for understanding and R-3 for presentation/journal.
Each rubric carries 10 marks.

Semester V (TY - B. Tech.) Chemical Engineering						
	CHE223005	: Lab work in Chemi	ical Reaction Enginee	ring I		
Teachi	ching Scheme: Credit Scheme:1 Examination scheme:					
Practica	al: 2Hrs / week		TW: 25 marks			
	Practical: 25 marks					
			Total: 50 Marks			
Prerequ	uisite: Concept of o	rder of reaction, molecula	arity, rate of reaction, conv	ersion and yield as		
covered	in the subject of pr	ocess calculations and ch	emistry.			
Course	Objectives:					
	1. To understand c	oncepts of rate equation a	and types of reactions			
	2. To determine ki	netics and design reactor				
	3. To determine pa	rameter dependency and	deviations occurring in rea	actors		
Course	Outcomes: On com	pletion of the course, lear	mer will be able to-			
Sr. No.		Course Outcomes		Bloom's Level		
CO1	Understand rate ec	uation and its representation	tion for given reaction.	2- Understand		
CO2	Analyze kinetic da	ta based on methods of a	nalysis.	4-Analyze		
CO3	Apply performance	ce equations to evaluate	e kinetic parameters for	5-Evaluate		
005	given reaction.					
CO4	Analyze deviations from ideality and plot different curves4-Analyse					
	S	uggested List of Laborat	tory Assignments:			
Any eig	ht practical's to be	performed out of the follo	owing:			
Sr.	Laboratory Experiments COs Mapped					
No.						
1.	Study of saponific	ation of ethyl acetate read	ction in batch reactor.	CO1, CO2,		
				CO3		
2.	Determination of A	Arrhenius parameters.		CO2, CO3		
3.	Study of pseudo	first order reaction: Acid	d catalyzed hydrolysis of	CO1, CO2,		
	methyl acetate			CO3		
4.	Study of saponif	ication of ethyl acetate	reaction in mixed flow	CO2, CO3		
	reactor.					
5.	Study of saponific	ation of ethyl acetate read	tion in plug flow reactor	CO2, CO3		
6.	CSTRs in series.			CO2, CO3		
7.	CSTR followed by	PFR.		CO2, CO3		
8.	RTD studies in PF	R.		CO4		
9.	RTD studies in M	FR.		CO4		
10.	RTD studies in He	lical coil reactor.		CO4		
		Guidelines for Laborat	ory Conduction			
• Teach	er will brief the	given experiment to s	tudents with its procedu	ure, observations,		
calculation, and outcome of the experiment.						

- Apparatus and equipments required for the allotted experiment will be provided by the lab assistants using SOP.
- Students will perform the allotted experiment in a group under the supervision of faculty and lab assistant.
- After performing the experiment, students will perform calculations based on the obtained readings and get it verified from the teacher.
- Students will then complete the experimental write up.

Guidelines for Student's Lab Journal

Write-up should include title, aim, diagram, working principle, procedure, observations, graphs, calculations, results, conclusions, etc.

Guidelines for Termwork Assessment

- 1. Each experiment from lab journal is assessed for 30 marks based on three rubrics.
- 2. Rubric R-1 is for timely completion, R-2 for understanding and R-3 for presentation/journal. Each rubric carries 10 marks.

	Semester V (TY - B. Tech.) Chemical Engineering				
	<u> </u>	HE223006A: Ch	nemical Process Industries	8	
Teachi	ng Scheme:	Credit Scheme:3	edit Scheme: 3 Examination scheme:		
Theory	: 3 hrs/week		In Semester Exam: 20 mar	XS	
			End Semesters Exam: 60 m	arks	
			Continuous Comprehensive	Evaluation: 20 marks	
D			Total: 100 Marks	6	
Prerequ	isites: Basic 1	Knowledge of Chem	ical compound, introduction o	f unit processes and	
Course	Objectives:				
1 To	study introduces.	ction of chemical er	ngineering and study of glass	coal and chlor-alkali	
indu	istries	cion or enermear er	ignicering and study of glass, v		
2. To s	study natural o	chemical industry.			
3. To s	study nitro-ph	osphorus, sulfur ind	ustry.		
4. To s	study petroleu	m and polymer indu	istry.		
5. To s	study petroche	emical industry.			
Course	e Outcomes:	On completion of th	e course, students will be able to	0-	
CO		Course O	utcomes	Bloom's Level	
CO1	Understand and chlor-all	the basic concept a cali industry.	and explain about glass, coal	2-Understand	
CO2	Understand	and describe about r	natural chemical industry.	2- Understand	
CO3	Understand industry	and explain abo	out nitro-phosphorus, sulfur	2- Understand	
CO4	Understand industry.	and describe abo	out petroleum and polymer	2- Understand	
CO5	Understand	and describe about p	petrochemical industry	2- Understand	
		Cou	irse Contents:	Γ	
Unit 1	Basic Co	oncepts (L07)		COs Mapped :CO1	
Introdu concepts anatomy	ction: Chemical p of a chemical	cal industries-facts a rocessing and role l manufacturing pro	of chemical engineers, process cess, major engineering problem	flow diagrams, the ns	
Glass In	dustries: Me	thod of manufacture	e, manufacture of special glasses	S C 1	
Coal C	hemicals: D_{i}	estructive distillatio	on of coal, Types of carboni	zation, Coke oven–	
Chlor A	tion, working	and applications	de ash Production of Chloring	and aquetia code	
Unit 2	Natural	Chemical Industry		COs Manned ·CO2	
i S	Sugar and star	ch industry		COS Mapped .CO2	
ii (Dil Fat and w	axes			
iii. F	Pulp and Pape	r industry			
iv. Food and food- by product processing					
Unit 3	Nitrogen	, Phosphorus and s	ulfur Industry (L07)	COs Mapped :CO3	
i. N	i. Nitrogen Industry: Production of Ammonia, Nitric acid, Urea, Ammonium Nitrate.				
ii. Phosphorous Industry: Production of Phosphoric acid, single and triple Super Phosphate, Ammonium Phosphate					
iii. S	Sulphur Indust	ry: Production of Su	ulphur, Sulphuric acid, Ammoni	ium sulphate.	
Unit 4	Petroleur	n and Polymer Ind	ustry (L07)	COs Mapped :CO4	
i.	Petroleum In	dustry: History of	production of crude petroleur	n, characteristics of	

г

	refineries-refinery operations,						
ii.	Introduction to Polymer, Classification of Polymerization, Produc	tion:polyolefins:					
	polyethylene, poly propylene and polystyrene, styrene copolymers, polyvinyl						
	chloride, polycarbonate, nylon 6, nylon 66, urea formaldehyde, st	yrene butadiene					
	rubber (SBR) etc						
Unit 5	Petrochemical Industry (L08) CO	Ds Mapped :CO5					
i.	C1 Compounds: Production of Methanol, Formaldehyde, ar	d Halogenated					
	Hydrocarbons etc.	C					
ii.	C2 Compounds: Production of Ethylene and Acetylene- Stea	m Cracking of					
	Hydrocarbons, Ethylene Dichloride, Vinyl Chloride etc.	-					
iii.	C3 Compounds: Production of Propylene by Indirect Hydration, A	cetone, Cumene					
	etc.						
iv.	Aromatic Compounds: Production of Phenol, Phthalic Anhydride and	Styrene etc.					
REFER	RENCE BOOKS:						
1. Dr	yden's Outlines of Chemical Technology, M Gopal Rao, Marshal Sitti	g, East-west pres					
3 rd	Edition.						
2. Sh	reve's Chemical Process Industries, George T Austin, Tata McGRAW	Hill, 5 th Edition.					
3. Un	it Processes in Organic Synthesis, P. H. Groggins., Tata McGRAW-H	ill, 5 th Edition.					
4. Ch	emical Process Technology Jacob A. Moulijn, Michiel Makkee, A	Annelies E. van					
Di	epe, Wiley						
5. Inc	lustrial Chemicals, Feith – Keys and Clerk						
6. Ch	emical Technology- Venkateshwaralu, Vol. I, II, III, IV Chemical Eng	g. IIT Madras					
	Guidelines for Continuous Comprehensive Evaluation of Theory Co	ourse					
Sr.	Components for Continuous Comprehensive Evaluation	Marks					
No.		Allotted					
1	Three assignments on unit-1, unit-2, unit-3 & 4	10					
2	Group presentation on unit-5	05					
3	LMS Test on each unit	05					
	Total	20					

Semester V (TY B. Tech.) Chemical Engineering						
	CHE223006B: Artificial Intelligence					
Teachir	ng Scheme:	Credit Scheme:3	Examination scheme:			
Theory:	3 hrs/week		In Semester Exam: 20 marks			
			End Semesters Exam: 60) marks		
			Continuous Comprehensi	ive Eval	uation: 20 marks	
			Total: 100 Marks			
Prerequi	site: - Engine	eering Mathematics, Fu	indamentals of Chemical	Enginee	ering	
Course (Objectives:					
1. Intro	duce the fun	damental concepts and	applications of Artificia	l Intelli	gence (AI) in	
the c	ontext of Che	emical Engineering.				
2. Equi	p students w	with the necessary know	wledge and skills to utiliz	ze Al to	echniques for	
prob	lem-solving,	analysis, and design in	the chemical engineering	domain	l	
3. Deve	elop critical t	hinking and problem-so	biving skills through hand	s-on ex	perience with	
	bols and tech	nques.	ursa laarnar will be able t	~		
Course (Jucomes: O	Course Or		0	Ploom's	
51.110		Course O	utcomes		Level	
CO1	Define key	y AI concepts like kn	owledge representation,	search	2-Understand	
	algorithms	, and machine learning	techniques.			
CO2	Explain the	e strengths and limitati	ions of different AI appro	oaches	2-Understand	
	in various	chemical engineering a	pplications.			
CO3	Implement	basic AI models using	g Python programming to	o solve	3-Apply	
	problems r	elated to chemical engi	neering analysis and desig	gn.	6 E 1 4	
COA	Evaluate t	ne effectiveness of ap	plied AI solutions for sp	pecific	5-Evaluate	
04	officionav	and interpretability	sidering factors like acc	uracy,		
	Design an	d implement a simple	AI solution using appre	nriate	5-Evaluate	
CO5	techniques	to address a specif	ic challenge in the ch	emical	J-LValuate	
000	engineerin	g domain.	te enanenge in the en	enneur		
	8	Course	e Contents:			
Unit 1	Introduction	n to AI (L07)		COs N	Iapped:CO1	
Introduct	ion to AI and	d its historical perspect	tive; Implications of AI f	for solv	ing engineering	
problems	, specifically	in chemical engineerin	ng analysis and design; C	ase stuc	lies showcasing	
the use of	f AI in the ch	emical engineering ind	ustry.	1		
Unit 2	Symbolic AI	(L07)		COs N	Iapped: CO2	
Knowled	ge representa	ation: Propositional an	d predicate calculus, Pro	duction	rules, Frames,	
objects, and ontologies; Search: Game trees and search algorithms (depth-first, breadth-first,						
best-first), Forward an	d backward chaining te	echniques.	<u> </u>		
Unit 3	Umit 3 Python Programming Fundamentals (L07) COs Mapped: CO2					
Introduction to Python programming language; Learning basic programming syntax, data						
learning						
Unit 4	Knowladga]	Pacad Systems and M	achina (I 07)		Jannad: CO4	
Knowla	dre-Based	Fynert Systems: Intr	aduction and its appli	cations	in chemical	
engineer	ring Case a	tudies focusing on P	rocess fault diagnosis ar	id cont	rol Operating	
procedu	res synthesis	and process safety, Pro	cess design, Product desi	gn; Mac	chine Learning	

A DECEMBER OF A

K. K. Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

Techniques: Data visualization and clustering techniques (k-means, k-medoids, densitybased clustering, hierarchical clustering), Classification techniques (PCA/PLS, decision trees, kNN, LDA, SVM, kernel methods, RBN, neural networks, autoencoders), Regression techniques (linear regression, regularization, nonlinear regression).

Unit 5Advanced AI Techniques (L08)COs Mapped: CO5Genetic algorithms and directed evolution for materials design; Ensemble learning methods:
boosting and random forests; Modeling with deep neural networks (DNNs) and recurrent
neural networks (RNNs); Reinforcement learning and graphical models; Introduction to
hybrid AI models - combining symbolic and numeric AI techniques; Domain-specific
ontologies, languages, and compilers.

REFERENCE BOOKS:

- 1. Artificial intelligence in chemical engineering, Thomas E. Quantrille, Academic Press, 1st Edition.
- 2. Artificial Intelligence: A new Synthesis, Nilsson Nils J., Morgan Kaufmann Publishers Inc.
- 3. Artificial Intelligence, Patrick Henry Winston, Addison-Wesley Publishing Company.
- 4. Computational Intelligence: An Introduction, Andries P. Engelbrecht, Wiley India, 2nd Edition.
- 5. Artificial Intelligence- A Modern Approach, Russell S, Norvig P, Pearson Education , 4^{th} Edition.

	Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted					
1	Three assignments on unit-1, unit-2, unit-3 & 4	10					
2	Group presentation on unit-5	05					
3	LMS Test on Each unit	05					
	Total	20					

	Semester V (TY B. Tech.) Chemical Engineering				
	CHE22300 7	7A: Lab work in Chemi	ical Process Industries		
Teach	ing Scheme:	Credit Scheme:1	Examination scheme:		
Practio	cal: 2Hrs. /Week		TW: 25 marks		
	Oral: 25 marks				
			Total: 50 Marks		
Prereq	uisites: Basic Knowle	edge of Chemical compound	, Introduction of unit process	ses and unit	
operation	ons				
Course	Objectives:				
1. To S ind	Study introduction of lustries	f chemical engineering and	study of glass, coal and o	chlor-alkali	
2. To s	tudy Natural chemical	l industry.			
3. To s	tudy nitro-phosphorus	s, sulfur industry.			
4. To s	tudy Petroleum and Po	olymer Industry.			
5. To s	tudy Petrochemical In	ndustry.			
Course	• Outcomes: On comp	pletion of the course, learner	will be able to:-		
Sr. No.		Course Outcomes		Bloom's Level	
CO 1	Apply process calcu	lation approaches to synthes	ize lab-scale products	3-Apply	
СО	Gain proficiency in	drawing process flow sheet	s using CAD software and	2-	
2	simulating processes	s using simulation software.		Understand	
CO	Demonstrate compet	tency in applying mass and e	energy balance principles	3-	
3				Demonstrate	
	Su	iggested List of Laboratory	y Assignments:		
Any e	ight practical's to be p	performed out of the following	ng:		
Sr.		Laboratory Experime	nts	СО	
No.				Mapped	
1.	Lab scale product s	ynthesis.		CO1	
2.	Mass balance calcul approach.	lations of any two processes	using process calculation	CO3	
3.	Heat balance calculated approach.	ations of any two processes	using process calculation	CO3	
4.	Calculations based	on recycle operations.		CO3	
5.	Process flow sheets	drawing of any two process	es using CAD.	CO2	
6.	Simple mass & ener	rgy balance using process sin	nulators	CO2	
7.	Process flow shee Software	ets drawing of any two pr	rocesses using Simulation	CO2	
8.	Mass Balance using	g Simulation approach		CO3	
9.	Energy Balance usi	ing simulation approach		CO3	
Guidelines for Laboratory Conduction					
 Teac calcu App assis 	cher will brief the ulation, and outcome of aratus and equipment stants using SOP.	given experiment to stud of the experiment. ts required for the allotted	ents with its procedure, or experiment will be provide	bbservations, d by the lab	

• Students will perform the allotted experiment in a group under the supervision of faculty and

lab assistant.

- After performing the experiment, students will perform calculations based on the obtained readings and get it verified from the teacher.
- Students will then complete the experimental write up.

Guidelines for Student's Lab Journal

Write-up should include title, aim, diagram, working principle, procedure, observations, graphs, calculations, results, conclusions, etc.

Guidelines for Termwork Assessment

- 1. Each experiment from lab journal is assessed for 30 marks based on three rubrics.
- 2. Rubric R-1 is for timely completion, R-2 for understanding and R-3 for presentation/journal. Each rubric carries 10 marks.

Semester V (TY B. Tech.) Chemical Engineering					
Taaabi	CHE2	22300/B: Lab Work	In Artificial Intelligen	ce	
Practice	and 2Hrs. /Wesk				
Tactica	al. 21115. / WCCK		Oral: 25 marks		
	Total: 50 Marks				
Prereau	isite: - Engineering Mat	hematics. Fundamental	s of Chemical Engineering		
Course	Objectives:				
1. Intro cont 2. Equ	oduce the fundamental text of Chemical Engine ip students with the r	concepts and application ering. necessary knowledge a	ons of Artificial Intelligence	e (AI) in the chniques for	
3. Dev tool	elop critical thinking and solving, and solving are solving and so	nd design in the chemic nd problem-solving skil	al engineering domain. Ils through hands-on experi-	ence with AI	
Course	Outcomes: On completi	ion of the course, learne	r will be able to:-		
Sr.		Course Outcomes		Bloom's	
No.				Level	
CO1	Define key AI cor algorithms, and machin	ncepts like knowledg ne learning techniques.	e representation, search	2-Understand	
CO2	Explain the strengths and limitations of different AI approaches in 2 variouschemical engineering applications			2-Understand	
CO3	Implement basic AI models using Python programming to solve 3-A problems related to chemical engineering analysis and design.			3-Apply	
CO4	Evaluate the effectiveness of applied AI solutions for specific chemical 5-Evaluate engineering tasks, considering factors like accuracy, efficiency, and interpretability				
CO5	Design and implement to addressa specific cha	a simple AI solution us allenge in the chemical	sing appropriate techniques engineering domain.	5-Evaluate	
	Sugge	ested List of Laborator	ry Assignments:		
Any eig	the practical's to be perfected	ormed out of the follow	ing:		
Sr. No	I	List of Laboratory Ass	ignments	CO Mapped	
1.	Explore & present Ch	E applications of AI, w	th benefits & challenges.	CO1	
2.	Build a collaborative	history of AI with onlin	e tools.	CO2	
3.	Solve a chemical eng	ineering problems with	logic.	CO3	
4.	Build molecules by fo	ollowing production rule	es.	CO3	
5.	Basic codes for chem	ical engineering calcula	tions.	CO3	
6.	Use of Python to find	patterns in chemical da	ıta.	CO3	
7.	Use AI to analyze data and predict chemical reactions. CO3				
8.	Use AI simulation to	optimize chemical proc	esses.	<u>CO4</u>	
9.	Explore how AI safeg	guards chemical process	ses.		
10.	Solve a chemical eng	ineering problem using	a combo of Al techniques.	CO5	
1 T-	Gu	idelines for Laborator	y Conduction	taama	
1. Tea 2. Stud	dents will solve the allot	ted problem either using	g standard literature survey of	r python	

software if required.

- 3. After solving problem, students will check their results from the teacher.
- 4. Students will then complete the write up.

Guidelines for Student's Lab Journal

Write-up should include title, software used, concept utilized, course usage and problem statement, conclusion, programming steps and programming results if any.

Guidelines for Termwork Assessment

- 1. Each experiment from lab journal is assessed for 30 marks based on three rubrics.
- 2. Rubric R-1 is for timely completion, R-2 for understanding and R-3 for presentation/journal. Each rubric carries 10 marks.

Semester V (TY - B. Tech.) Chemical Engineering CHE223008: IPR and Patents						
Teachin Theory:	Teaching Scheme: Theory: 2 hrs/weekCredit Scheme: 2Examination Scheme: Continuous Comprehensive Evaluation: 50 Marks					nsive
Prerequ	isite Courses: NA			·		
Course	Objectives: Provide basics of various Provide insight into the reproperty Enable students to draft p	forms of i egistration patent speci	ntellectual p procedure f ifications or	oroperty for various form their own	should be	ectual
Course					Ploor	n's Loval
				and nations	BIOUL	
CO1	Define various forms of	intellectu	al property a	and patent	1-Rei	nember
CO2	Explain the registration procedure for various forms of intellectual property 2-Understand				lerstand	
CO3	Draft patent application 3-A			Apply		
		Cours	e Content			
Unit I	Introduction to IP, Pater	nt Basic, a	nd Patent fil	ling procedure ((L05)	CO1, CO2
Unit II	Copyright basic, Industr	rial Design	, Emerging	issue, (L05)		CO1, CO2
Unit III	Trademark basic, GI ba	sic, IC Lay	out Design	, (L05)		CO1, CO2
Unit IV	Trade secret, Comparat	ive analysi	s, IP manag	gement(L05)		CO1, CO2
Unit V	Jnit V Invention as a solution to an unsolved problem, Drafting a Claim, CO1, CO. Specification(L05)					CO1, CO3
	NPTEL Course					
1	https://archive.nptel.ac. Drafting For Beginners	in/courses/	109/106/10	<u>9106128/</u> NPT	EL Cours	e on "Patent
2	2 <u>https://archive.nptel.ac.in/courses/109/105/109105112/</u> NPTEL Course on "Introduction On Intellectual Property To Engineers And Technologists"					
	Juidalinas for Continue	na Comercia	ahandera T	voluction of T		
	Juidennes for Continuo	ous Compr	renensive E	valuation of 1	neory Co	urse

	Guidelines for Continuous Comprehensive Evaluation of Theory Course					
Sr.	Components for Continuous Comprehensive Evaluation	Marks				
No.		Allotted				
1	Three Assignments and LMS Tests on Unit-1, Unit -2, Unit -3.	30				
2	Group Presentations on Unit-4 and Unit-5.	20				
	Total	50				

	Semester V (TY - B. Tech.) Chemical Engineering			
	Cl	HE223009: Piping l	Design and Engineerin	g
Teachin	g Scheme:	Credit Scheme:3	Examination scheme:	
Theory:	3 hrs/week		In Semester Exam: 20 mar	ks
			End Semesters Exam: 60 n	narks
			Continuous Comprehensive	Evaluation: 20 marks
	Total: 100 Marks			
Prerequis	sites: Courses	s of Fluid Mechanics, Ch	emical Engineering Material	S
Course () bjectives:			
1. To ir	troduce the o	concepts of piping desig	gn, abbreviations used in pip	ing engineering.
2. To ic	lentify the va	rious piping componen	ts required in industry.	
3. To a	pply the vario	ous concepts of piping s	supports, stress analysis.	
Course ()utcomes: O	n completion of the cou	urse, learner will be able to:-	
Sr. No		Course Out	comes	Bloom's Level
CO1	Utilise the p	piping design basic cond	cept for designing of plant.	2-Understand
CO2	Implementin requirement	ng the appropriate pip in industries.	pe components as per th	e 3-Apply
CO3	O3 Distinguish between different piping flow diagrams such as 2-Understand piping isometric, P&IDs.			
CO4	Prepare the	piping layout as well as	piping isometric.	3-Apply
CO5	Predicting 1	the stress in a pipe li	ne and distinguish betwee	n 4-Analyse
	different pip	ing supports as per the	applications.	
Unit 1	Introduct	tion to nining designin	g & engineering (L08)	Os Manned: CO1
Evolution	of piping	. Manufacturing met	hods. Piping materials a	and selection. Pipe
dimensio	ning Schedu	le numbers, Common	piping abbreviations, Maj	or organizations for
standards	, ASME/AN	SI Codes & Specifica	ation, Specification classes	Type of Fittings -
elbows, w	veld tee, stub	in, mitre bends, reinfo	rcement pad calculation for	branch connections,
couplings	, reducers,	weld cap, screwed a	and socket welded fitting	s, blanks, reducers,
expansion	n joints, pipe	nipples, flanged fitting	gs and use of fittings, Type	Flange -Types, P-T
ratings ar	d facings, G	askets, bolts and nuts.		
Unit 2	Materials	s for Piping (L07)	(COs Mapped: CO2
Selection	of material f	or piping, desirable pro	perties of piping materials,	materials for various
Temperat	ure and press	sure conditions, materia	als for corrosion resistance.	Common ASTM and
IS specif	ications for:	Seamless / ERW pipe	es, materials for valves, Ga	skets. Insulation for
Hot and cold materials and their important properties, insulation material selection criteria,				
Typical insulation specification – not and cold materials.				
Unit 3 Piping Engineering drawings and its concept (L07) COs Mapped: CO3				
Uses of	flow diagram	ms, process flow diag	rams, mechanical flow di	agrams, utility flow
diagrams	, piping sy	mbols, line symbols,	valve symbols, piping	isometrics, general
arrangem	ent drawings	- sections/elevations/ d	etall drawings, plot plan pro	Decedures, Purpose of
$\int r \alpha ID S$,	suuy 01 P&I	l/nlants Introduction	to equipment layout priv	ving layout piping
isometric	s and hill of	material	to equipment layout, pi	mg ayout, piping

 $\frac{1}{2}$

3

Unit 4 **Design of Pipe racks and storage terminals (L07) COs Mapped: CO4** Design of Pipe Rack, Pipe Rack Spacing, Placing Lines, Width & Height Calculations, development of Pipe Rack Layouts and Isometric Preparation, Design of Storage terminal, need of Tank Farm, development of Equipment and Piping Layouts, Nozzle Orientation. Piping Supports and introduction to stress analysis (L07) COs Mapped: CO5 Unit 5 Pipe Supports, pipe insulation shoes, pipe guides, field supports, dummy supports, hanger rods, spring hangers, pick-up, control valve manifolds, utility stations, sewer and underground piping system, Introduction to Pipe Stress Analysis, various methods of releasing stress in piping system, support selection to minimize stresses in piping system using support span calculations and loop calculations. **REFERENCE BOOKS:** 1. Piping Design Handbook, John J. Mcketta, CRC Press, 1st Edition. 2. Process plant layout and piping design by Ed Bausbacher& Roger Pearson Prentice Hall, 1st Edition 3. Piping Handbook, Edited, Mohinder Navyar, McGraw-Hill Professional, 7th Edition 4. Pipe Drafting and Design by Roy A Parisher, Elsevier, 3rd Edition **Guidelines for Continuous Comprehensive Evaluation of Theory Course** Sr. **Components for Continuous Comprehensive Marks Allotted** Evaluation No.

10

05

05

20

Total

Three assignments on unit-1, unit-2, unit-3 & 4

Group presentation on unit-5

LMS Test on each unit

K. K. Wagh Institute of Engineering Education and Research, Nashik

	Semester: V (TY - B. Tech.) Chemical Engineering					
		CHE223010:Se	minar			
Teach	ching Scheme:Credit Scheme:2Examination scheme:					
Tutori	al : 1 hr/Week		Tut: 25 Marks			
Practic	cal: 2 Hrs. /Week		TW: 25 Marks			
			Total: 50 Marks	0 11 1		
Prerec	[uisites: Basic know	ledge of chemical enginee	ring principles and proces	ses, familiarity		
With a	cademic research me	thods and resources.				
	e Objectives: davalap the skills pa	aggery for identifying an	d colocting a relevant toni	in the field of		
1.10	evelop the skills he mical Engineering f	or seminar presentation	a selecting a relevant topk			
2 To	provide students wit	h the ability to conduct co	mprehensive literature su	vevs to gather		
info	provide students with	is sources such as reference	e books, journals, and the	internet.		
3. To	enhance students' teo	chnical writing skills by pr	eparing a seminar report	using standard		
for	natting guidelines.			U		
Cours	e Outcomes: On co	mpletion of the course, lea	rner will be able to:-			
Sr. No	•	Course Outcomes	3	Bloom's		
				Level		
CO1	Develop the abil	ity to critically assess and	d evaluate research data	5- Evaluate		
	relevant to Chem	nical Engineering.				
CO2	Acquire the ski	lls to compile this data	into a well-organized	3-Apply		
02	seminar report, a	dhering to academic stand	lards.			
	Exhibit effective	communication skills by	delivering a informative	3-Apply		
CO3	seminar presenta	tion supported by visual a	aids such as PowerPoint			
	slides.					
		Course Conter	nts:			
Modu	le 1 Intro	duction and Topic Select	$\frac{1}{1} \frac{1}{1} \frac{1}$	Aapped: CO1		
Semin	ar Course Introducti	on,, Guidance of Seminar	topic selection, Discussion	on on Literature		
Survey	/ Methous	oturo Survov (I 01)	COc	Jannad: CO2		
Under	standing the import	ance of literature surveys	in research Techniques	for conducting		
effecti	ve literature searche	ance of inclature surveys	in research, rechniques	for conducting		
Modul	e 3 Tech	nical Writing (L04)	COs N	fapped: CO3		
Develo	on Technical Writin	g Skills for Seminar Re	ports. Understand Report	t Organization:		
Introd	uction, Literature S	Survey, Results, Discuss	ion, Conclusions, Refer	ences, Prepare		
Semin	ar Presentations: De	sign PowerPoint slides, St	ructure Presentation			
		Guidelines for Tutoria	l Evaluation			
Sr.	Co	mponents for Tutorial Ev	valuation	Marks		
No.	o. Allotted					
1	Two Assignments on Module 1 and Module 210					
2	Group Presentation	on Module 3		10		
3.	3. LMS Test on Each Unit 05					
	Total 25					
		Guidelines for Term wor	rk Assessment	-4		
includ	work assessment of	seminar is to be based or	overall performance of	students, which		
	es the following]	and contribution in vori	pletion of tasks, perfor	ob as literature		
puncti	anty, participation,	and contribution in Varie	Jus seminar activities su	ch as merature		

K. K. Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

study, presentations, and teamwork. Students will prepare a seminar report and deliver a PowerPoint presentation on the seminar topic.

Format of the Seminar report and TW assessment:

- 1. The Seminar report should be based on a detailed study of any relevant topic to Chemical Engineering. The typing shall be with normal spacing and on one side of the paper.
- 2. The report should be submitted in spiral bound format.
- 3. Front cover: This shall have the following details.
 - Title of the seminar report.
 - The name of the candidate with roll number / examination seat number at the middle.
 - Name of the guide below the candidate's details.
 - The name of the institute and year of submission on separate lines at the bottom.
- 4. The format of the text of the seminar reports:
 - The report shall be presented in the form of a technical paper. The introduction should be followed by literature survey.
 - The result-discussion and conclusions shall form the last part of the text. Nomenclature and symbols should be added. References should be written in the standard format after the conclusion.
 - The total number of typed pages, excluding cover shall be about 25 to 30. All the pages should be numbered. This includes figures and diagrams.
- 5. Two copies of the seminar report shall be submitted to the Institute. The candidate shall present the seminar through power point presentation. The total duration of presentation and discussion should be about 30 minutes max. [25 min + 5 min].

Semester: VI (TY - B. Tech.) Chemical Engineering					
	CHE223011: Mass Transfer II				
Teachi	Teaching Scheme: Credit Scheme:3 Examination scheme:				
Theory	: 3 hrs/week		In Semester Exam: 20 mark	S	
	End Semesters Exam: 60 marks Continuous Comprehensive Evalu				
Prereau	usites: Fundar	mental Knowledge of r	rinciples of mass transfer pr	ocess calculations	
Thermo	dynamics and	unit operations in Cher	nical Engineering		
Course	Objectives:				
1. To a $in C$	acquire basic	understanding of Mass	Transfer operations, their pr	rinciples used	
2. To a	apply the know	wledge for the process	design of mass transfer oper	ations for the	
sepa	aration of mixt	tures			
3. To l	be able to oper	rate the mass transfer of	perations in Chemical proces	s industries.	
Course	Outcomes: O	n completion of the cou	urse, learner will be able to:-		
Sr. No		Course Out	comes	Bloom's Level	
CO1	Apply the p design and o	principles of Distillation perations.	on operation for its process	3-Apply	
CO2	Separate the	e liquid mixtures base	d on solubility of solute in	4-Evaluate	
	selective solv	vent using solvent Extra	action.		
603	Apply the p	3-Apply			
003	Leaching on				
	Illustrate the adsorption and ion Exchange techniques for the			2-Understand	
CO4	separation b	separation by concentrating the specific substances using the			
	surface phen	omenon.			
~~~	Select and d	esign of the crystallize	r for deriving the crystalline	6-Create	
CO5	products and	products and acquire the understanding of novel separation			
	techniques.	Course	Contonts:		
Unit 1	Distillatio	(1.08)	Contents.	COs Mannad:	
	Distination	л (100)		COS Mapped. CO1	
Basic D	istillation, con	cept of relative volatili	ity, Differential distillation, H	Flash or equilibrium	
distillati	on, Fractionat	ing column and multi	stage column, Batch, azeotr	opic and extractive	
distillati	on, binary an	d multi-component sy	stems, Reflux ratio, need for	or reflux, McCabe-	
Thiele, 1	Lewis-Sorel n	nethods of estimation	of number of plates, Operat	ting and feed lines,	
minimu	n and optimu	m reflux ratio, Tray and	d column efficiency, Packed	column distillation,	
Fenske's equation, Fenske-Underwood equation, use of open steam, Partial and total					
Condensers, reboilers, tray efficiencies					
Unit 2	Solvent E	Extraction (L07)		COs Mapped:	
				CO2	
Principle	es of solvent l	Extraction, Application	s in industry, Ternary liquid	equilibria, systems	
of three	liquids, Effect	t of temperature, Choic	e of solvent, distribution coe	fficient, Selectivity,	
Stage w	ise Contact: s	ingle stage extraction,	multistage crosscurrent, cou	intercurrent and co-	
current extraction, calculations based on triangular diagrams, $x - y$ coordinates and solvent					



6

free basis, Continuous counter current extraction, stage efficiency, Differential (continuous contact extraction); packed towers, HTU and NTU concept, Numericals, types of extractors, Stage wise Extractors, Mixer- settler, Sieve Tray Extraction, Rotating Disk Contactor, Scheibel Extractor, Pulsed Column, Centrifugal Extractor

Unit 3	Leaching (L07)	COs Mapped:				
Principles	of Leaching Applications in industry Factors affecting th	e rate of leaching				
preparation	preparation of solids temperature Graphical representation of equilibrium Methods of					
operation a	and equipment; unsteady state operation and steady state oper	rations - continuous				
counter cu	urrent leaching, ideal stage equilibrium, operating time, i	retention of liquid,				
percolation	tank, filter press leaching, agitated vessels, constant and	variable underflow,				
number of	ideal stages, stage efficiencies, calculation of single stage and	multistage leaching				
processes,	Continuous countercurrent decantation, Rotocel, Bollman	Extractor, Kennedy				
Extractor, l	Pachuka tank, Supercritical extraction					
Unit 4	Adsorption and Ion Exchange (L07)	COs Mapped:				
		CO4				
Adsorption	: Principles of Adsorption: Physical and chemical adsorption	orption, Nature of				
adsorbents,	adsorption equilibrium and isotherms, Adsorption Hy	steresis, effect of				
temperatur	e, Single-stage, multi-stage cross-current and multi-stage	ge counter current				
operations,	Fixed bed equilibrium and operating lines, adsorption Isoth	erms-Langmuir and				
Freundlich	, Liquid-solid agitated vessel adsorbed, packed cont	inuous adsorption,				
of Lon Evol	gn curves, Adsorption model, pressure-swing adsorption, for E	exchange- Principles				
Unit 5	Crystellization and Nevel Separation Techniques (107)	COc Mannadi				
Unit 5	Crystalization and Novel Separation Techniques (L07)	COS Mapped: CO5				
Principle	of crystallization, rate of crystal growth, size distribution	on, Mechanism of				
crystallizat	ion, Solubility curves, Methods of super saturation, Mier's sup	er saturation theory,				
material b	alance, enthalpybalances, calculation of yield, Numericals	s, Classification of				
Crystallizer	rs; Agitated Tank Crystallizer, Swenson-Walker Crystallizer, V	acuum Crystallizer,				
Oslo Cryst	allizer. Introduction to membrane separation techniques: ul	tra-filtration, Nano-				
filtration, r	everse osmosis, types of membranes and membrane modules	, fluxes and driving				
forces in m	embrane separation processes.					
REFEREN						
1. Mass Tr	ansfer Operations, Treybal R.E., McGraw Hill, 3 rd Edition.					
2. Chemica	al Engineering, Vol I & II, Coulson J.M. and  Richardson J.F.,	McGraw Hill, 6 th				
2 Dringinl	as of Unit Operations, Wiley Student Edition, and Edition					
5. Principio	on Processos, C. Judson King, 2 nd Edition.					
4. Separation Processes, C. Judson King, 2 nd Edition.						
5. Design o	Di Equinorium Stage Processes, Buloru D.Sinith, McGraw Hill					
6. Unit Op	erations of Chemical Engineering, W. L. McCabe, J. C. Smith	and Peter Harriott,				
McGrav	V Hill, /" Edition. Cuidelines for Continuous Comprehensive Evaluation of Theory	r Course				
Sm	Guidelines for Continuous Comprehensive Evaluation of Theory Course					
No.	Components for Continuous Comprehensive Evaluation	Mains Alloued				
1	Three assignments on unit-1, unit-2, unit-3 & 4	10				
2	Group presentation on unit-5	05				
3	LMS Test on each unit	05				

Total

20



Semester VI (TY - B. Tech.) Chemical Engineering						
	CHE223012: Chemical Reaction Engineering II					
Teachir	ng Scheme:	Credit Scheme:3	Examination scheme:			
Theory: 3 hrs/week			In Semester Exam: 20 marks	S		
			End Semesters Exam: 60 ma	ırks		
			Continuous Comprehensive I	Evaluation: 20 marks		
_			Total: 100 Marks			
Prerequi	isites: Conce	pt of rate controlling sto	ep, reaction kinetics			
	<b>Objectives:</b>	insting of hotons company				
1.10 2 To	understand k	fluid fluid particle re-	actions			
2. 10 3 To	analyze fiuld	lytic reactions for desig	n			
Course (	Dutcomes: O	in completion of the co	urse learner will be able to:-			
Sr. No		Course Out	tcomes	Bloom's Level		
GOA	Determine	rate controlling step fo	r fluid-particle reactions and	3-Apply		
COI	applications	S.	1	11.7		
CO2	Apply the k	nowledge of fluid-fluid	d heterogeneous reactions for	3-Apply		
02	design of re	actors.				
CO3	Demonstrat	e the nature and m	echanism of catalysis and	3-Apply		
	adsorption					
CO4	Apply the	knowledge to predict	diffusion in porous catalytic	3-Apply		
C05	Design hete	reganaque regatore for	astalutia reactions	6 Craata		
	Design nete	Course	Contents:	0- Cleate		
Unit 1	Heterogeneo	us reactions (L07)	contents.	COs Mapped:CO1		
Types of	heterogeneo	us reactions, rates, cont	acting patterns, fluid-particle	reactions: selection		
of model	unreacted co	ore model, progressive	conversion model, Rate of rea	action for shrinking		
spherical	particles, De	etermination of rate co	ntrolling step, application to	design, application		
to fluidiz	ed bed with e	entrainment.				
Unit 2	Fluid – Fluio	d Reaction (L07)		COs Mapped: CO2		
Two film	n theory, Ra	te equation for reaction	on, kinetic regimes, film cor	version parameter,		
slurry rea	action kinetic	s, Hatta Number, conc	ept of enhancement factor, a	oplication to design		
absorptio	on column (fa	st and slow reactions)		COg Mannadi CO3		
Surface (	Catalysis an	d Adsorption (L08)	on isotherms and rates of ad	cos Mappeu: CO3		
determine	ation of surf	a ausorption, ausorptic	of void volume and solid de	sorption. Catalysis:		
distributi	on catalyst	selection preparation	of catalyst and its deactivat	ion poisoning and		
regeneration, nature and mechanism of catalytic reactions.						
Unit 4	Unit 4 Diffusion in porous catalytic reactions (L07) COs Mapped: CO4					
Gaseous	diffusion in	single cylindrical pore	, diffusion in liquids, in poro	us catalyst, surface		
diffusion	, mass trans	fer with reaction: eff	ectiveness factor, experimer	ntal and calculated		
effective	ness factor, s	electivity's for porous c	catalysts, rates for poisoned p	prous catalysts.		
Unit 5	Design of he	terogeneous catalytic	reactors (L07)	COs Mapped: CO5		
Multipha	se reactors,	Fluidized bed reactor	r, isothermal and adiabatic	fixed bed reactor,		
liuidized	tluidized bed reactor, slurry reactor, enzyme fermentation: Michaelis–Menten (M-M)					
KINCUCS,	minorion by	ioreign substance.				



#### **REFERENCE BOOKS:**

- 1. Chemical Reaction Engineering, Octave Levenspiel, Wiley, 3rd Edition.
- 2. Chemical Engineering Kinetics, J. M.Smith, McGraw-Hill Education, 3rd Edition.
- 3. Elements of Chemical Reaction Engineering, H. Scott, Fogler. Prentice Hall India Learning Private Limited, 4th Edition.
- 4. Heterogeneous Reactions: Analysis Examples and reactor Design. Vol.1 & 2, L. K. Doraiswamy and M. M Sharma
- 5. An Introduction to Chemical Reaction Kinetics & Reactor Design, C. G. Hill, John Wiley & Sons.

	Guidelines for Continuous Comprehensive Evaluation of Theory Course					
Sr.	Components for Continuous Comprehensive Evaluation	<b>Marks</b> Allotted				
No.						
1	Three assignments on unit-1, unit-2, unit-3 & 4	10				
2	Group Presentation on unit-5	05				
3	LMS Test on each unit	05				
	Total	20				



Semester: VI (TY - B. Tech.) Chemical Engineering					
	CHE2	23013: Lab work in	Mass Transfer II		
Teaching Scheme:Credit Scheme:1Examination scheme:					
Practica	Practical: 2Hrs. /Week TW: 25 marks				
			Practical: 25 marks		
D	•••	7 1 1 6 ' ' 1	Total: 50 Marks	1	1
Thermo	<b>isites:</b> Fundamental <b>F</b>	Chowledge of principles	of mass transfer, proces	ss cal	culations,
	Objectives:		, incerning		
1. To a	acquire basic understa	nding of Mass Transfer	operations, their princip	oles u	used in Chemical
indu	istries.	0			
2. To a	apply the knowledge	for the process design o	f mass transfer operation	ons fo	or the separation
of n	nxtures	mass transfor anomations	in Chamical process in	ducto	iaa
5. 10 C	Outcomes: On compl	letion of the course lear	in Chemical process in her will be able to:-	austr	ies.
Sr. No.		Course Outcome	<b>S</b>		Bloom's
			~		Level
CO1	Understand Basic pr	rinciple of Distillation o	peration and its applica	tion	2- Understand
	in separation of com	ponents.			
CO2	Evaluate the number	er of theoretical stages	for packed bed distillat	tion	5- Evaluate
	Separate the liquid	mixtures based on solul	hility of solute in selec	tive	3-Apply
CO3	solvent using solven	t Extraction and apply th	ne principles of solid-lic	uid	J-Apply
	Extraction (leaching	) for Solid-liquid separa	tion.	1	
CO4	Select and design of the crystallizer for deriving the crystalline 6-Create				6-Create
	products and acquire	e the understanding of no	ovel separation techniqu	les.	
CO5	Illustrate the adso	orption and ion Exch	ange techniques for	the	2- Understand
0.05	phenomenon.	initiating the specific su	Ustances using the sur	acc	
	Sug	gested List of Laborat	ory Assignments:		
	Any eigh	t practical's to be perform	med out of the following	g:	
Sr. No.		Laboratory Experiment	nts		COs Mapped
1.	Simple Batch Distilla	ation		CO	1, CO2
2.	Steam Distillation			CO	1, CO2
3.	Distillation with Tota	al Reflux		CO	1, CO2
4.	Vacuum Distillation			CO	1, CO2
5.	Distillation using Sieve Plate, Column CO1, CO2			1, CO2	
6.	Liquid-liquid equilibrium for ternary system CO3			3	
7.	Liquid – Liquid Extraction (single stage and multistage)CO3		3		
8.	Characterization of Spray Extraction Column CO3		3		
9.	York Scheibel Column CO3		3		
10.	Batch/ Continuous Leaching CO3		3		
11.	Batch Crystallization			CO	4
12.	Ion Exchange			CO	5
13.	Adsorption (batch or column study)CO5				

### K. K. Wagh Institute of Engineering Education and Research, Nashik



(Autonomous from Academic Year 2022-23)

#### **Guidelines for Laboratory Conduction**

- Teacher will brief the given experiment to students with its procedure, observations, calculation, and outcome of the experiment.
- Apparatus and equipments required for the allotted experiment will be provided by the lab assistants using SOP.
- Students will perform the allotted experiment in a group under the supervision of faculty and lab assistant.
- After performing the experiment, students will perform calculations based on the obtained readings and get it verified from the teacher.
- Students will then complete the experimental write up.

#### **Guidelines for Student's Lab Journal**

Write-up should include title, aim, diagram, working principle, procedure, observations, graphs, calculations, results, conclusions, etc.

#### **Guidelines for Termwork Assessment**

- 1. Each experiment from lab journal is assessed for 30 marks based on three rubrics.
- 2. Rubric R-1 is for timely completion, R-2 for understanding and R-3 for presentation/journal. Each rubric carries 10 marks.





Semester: VI (TY - B. Tech.) Chemical Engineering						
		CHE223014A: ]	<b>Renewable Energy</b>			
Teach	Teaching Scheme: Credit Scheme:3 Examination scheme:					
Theory	Theory: 3 hrs/week In Semester Exam: 20 marks			rks		
			End Semesters Exam: 60	narks		
			Continuous Comprehensiv	e Evaluation: 20 marks		
			Total: 100 Marks			
Prerequ	<b>isites:</b> Basic k	nowledge of Chemistry,	Physics, Thermodynamics,	Fluid Mechanics, Heat		
Transfer	, Process Engi	neering, Environmental	Science.			
Course	Objectives:		11 1			
1.10	understand ene	rgy sources, including re	enewables, and energy conve	ersion processes.		
2.10	explore blomas	ss, solar, and waste-to-en	d its use in fuel cells and trai	cations.		
$\begin{array}{c} \mathbf{S}.  10 \\ \mathbf{Course} \end{array}$		r production, storage, and	uns learner will be able to	isportation.		
Course Sn No			arse, learner will be able to	- Dloom's Loval		
5r. No	Classify you		comes	Dioolii S Level		
CO1	Classify vari	ous ellergy sources, ev	aluate their availability, af	a 2- Understand		
<u> </u>	Illustrate the	renewable energy relate	ed to biomass technologies	Analyze		
C02	Illustrate con	version technologies fo	r solar and its applications	4- Analyze		
	Understand	waste-to-energy conve	ersion processes and the	ir 2- Understand		
CO4	environmenta	al impacts, proposing m	itigation measures.			
~~~	Understand t	the fundamentals of hy	drogen energy systems at	nd 2- Understand		
CO5	the productio	n processes of hydroge	n energy.			
	F	Course	Contents:			
Unit 1	Sources of e	energy (L07)		COs Mapped: CO1		
Energy sources and their availability, renewable energy sources, Difference between						
renewał	ole and non-re	enewable energy source	es, Basics of energy: Diffe	rent forms of energy,		
energy o	conversion pro-	cess, indirect and direct	energy conversion. Conven	tional energy systems:		
engines,	power plants,	various methods of power	er generation			
Unit 2	Energy from	n Biomass (L08)		COs Mapped: CO2		
Biomas	s as a Rene	wable Energy Source	e, Biomass Conversion T	echnologies, Biogas		
Generat	ion and Class	ification of Biogas Plan	nts, Biomass Gasification,	Production Processes		
and Pro	perties of Bio-	alcohol and Bio-diesel,	Engine Applications of Bi	ofuels		
Unit 3	Solar Energ	gy (L07)		COs Mapped: CO3		
Sun and	l solar energy	y, solar radiation and	its measurement, solar en	ergy collectors, solar		
energy	storage meth	ods, Photovoltaic syst	tems, Application of sola	r energy. Solar PV		
modules	s, Application	is of solar PV system	s: water pumping application	tion, home & street		
lighting	lighting applications etc.					
Unit 4	Waste to en	ergy (L07)		COs Mapped: CO4		
Introduc	tion to Energ	y from waste: classific	ation of waste as fuel: Ag	o-based waste, forest		
residue, industrial waste. MSW conversion devices: incinerators, gasifiers, digesters.						
Environmental monitoring system for land fill gases, Mitigating Environmental Impacts of						
Waste I	ncineration.					
Unit 5	Hydrogen e	$\frac{\text{nergy}(L07)}{2}$		UUS Mapped: CO5		
Hydrog Hydrog	en Productior en Storage ar	n Processes: Thermal, and Transportation, App	electrochemical and Bio plications of Hydrogen Fu	el Cells, Hydrogen-		
Daseu F		65.				

K. K. Wagh Institute of Engineering Education and Research, Nashik

(Autonomous from Academic Year 2022-23)

REFERENCE BOOKS:

- 1. Non-Conventional Energy Sources, G. D. Rai, Khanna Publishers.
- 2. Non-Conventional Energy Sources, T.P. Ojha Rajesh K. Prasad, Jain Brothers, 4th Edition.
- 3. Solar energy Thermal Collection and storage, P. S. Sukhatme, McGraw Hill Education, 3rd Edition.
- 4. Powerplant Technology, M. M. El-Wakil, McGraw Hill Education, 1st Edition.

Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr.	Sr. Components for Continuous Comprehensive Evaluation Marks			
No.		Allotted		
1	Three assignments on unit-1, unit-2, unit-3 & 4	10		
2	Group presentation on unit-5	05		
3	LMS Test on each unit	05		
	Total	20		

Semester VI (TY B. Tech.) Chemical Engineering					
	C	HE223014B: Chen	nical Process Synt	hesis	
Teach	Teaching Scheme:Credit Scheme:3Examination scheme:				
Theory: 3 hrs/week In Semest			In Semester Exam: 2	er Exam: 20 marks	
			End Semesters Exam	n: 60 r	narks
			Continuous Compreh	ensive	e Evaluation: 20
			marks		
-		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Total: 100 Marks		
Prerequ	nisite: Basic (Concepts of heat transfe	er, mass transfer, desig	gn.	
Course	Objectives:	. • . 1 • 1	CI 1 4		
$\begin{array}{c c} 1. & 10 \\ 2 & T_{0} \end{array}$	understand ho	w to invent chemical pi	cocess flow sheets.		them and here to
2. 10	understand no	w to develop process al	iternatives; now to gen	ierate	them and now to
Course	Outcomes: O	n completion of the co	urse learner will be ab	le to:	_
Sr No		Course Outco	mes	<i>ле</i> то.	- Bloom's Level
51.110	Interprete to	process development	different considerati	one	2-Understand
CO1	overall proces	s design bierarchy of i	vinterent considerati	ons,	2 Oliderstand
	Differentiate	trmas of mastions	lination montion m	the	2-Understand
CO2	Differentiate	Separation techniques	kinetics, reaction pa	auns,	2 Onderstand
	Apply the pi	nch technology in ord	er to ontimize the en	erav	3-Apply
CO3	usage in indu	stries	er to optimize the en	ergy	5 rippiy
	Design distill	ation sequencing heat	integration of seque	ncas	3-Apply
CO4	of simple distillation columns			lices	
	Evaluate of	ficient Heat Excha	nger Networks P	inch	5-Evaluate
CO5	Technology problem table algorithm Threshold problems				
0.00	etc.	problem tuble utgoin	ini, rineshola proof	ems	
		Course	Contents:		
Unit 1	Introduction	to Chemical Process	Design (L07)	COs	Mapped: CO1
Introduc	ction, approac	h to process develop	nent, development of	f new	process, different
conside	rations, develo	opment of particular	process, overall proc	ess d	esign, hierarchy of
process	design, onion	model, approach to pro	cess design.		
Unit 2	Choice of Re	eactor and separator	(L07)	COs	Mapped: CO2
Reaction	n path, types	of reaction systems, r	eactor performance, i	dealiz	zed reactor models,
reactor	concentration,	temperature, pressure	, phase, catalyst. Sep	aratio	n of heterogeneous
mixture	s, separations	s of homogeneous r	nixtures, distillation,	azeo	otropic distillation,
absorpti	on, evaporatio	on, drying etc		00	
Unit 3	Pinch Techn	ology-an overview	(L07)	COs	Mapped: CO3, CO5
Introduc	ction, Basic	concepts, How it is	different from ene	rgy a	auditing, Roles of
Technol	logy: Concept	, prodients addressed	by Plincin Technolog traction Targeting I	gy. n Decim	ning Optimization
Super_t	argeting Rasi	r Elements of Pinch 7	Fechnology: Grid Dia	oram	Composite curve
Problem Table Algorithm Grand Composite Curve					
Unit 4	Distillation S	Sequencing (L.07)		COs	Mapped: CO4
Distillat	ion sequencir	ig using simple colum	nns, heat integration	of se	equences of simple
distillation columns, distillation sequencing using thermal coupling. optimization of					
reducible structure, Retrofit of distillation systems.					

K. K. Wagh Institute of Engineering Education and Research, Nashik

Unit 5Heat Exchanger Network(L08)COs Mapped: CO)5					
Targeting of Heat Exchanger Network: Energy Targeting, Area Targeting, Number of units						
targeting, Shell Targeting and Cost targeting. Pinch Design Methods, Heuristic	10rules,					
stream splitting, design of maximum energy recovery(MER). Use of multiple utilit	ies and					
concept of utility pinches, Design for multiple utilities pinches, Concept of th	reshold					
problems and design strategy. Network evolution and evaluation, identification of lo	ops and					
paths, loop breaking and path relaxation. Design tools to achieve targets, Driving for	ce plot,					
remaining problem analysis, diverse pinch concepts. Targeting and designing of HE	Ns with					
different Δ Tmin values, Variation of cost of utility, fixed cost, TAC, number of sh	ells and					
total area with Δ Tmin Capital-Energy tradeoffs.						
REFERENCE BOOKS:						
1. Chemical Process: Design and Integration, Robin Smith, Wiley–Blackwell.						
2. Conceptual design of chemical process-James Douglas, McGraw-Hill Education.						
3. Unit process in organic synthesis – P.H. Groggins, McGraw Hill Education.						
4. Dryden's Outlines Of Chemical Technology, M Gopal Rao, Marshal Sittig,						
East-west press 3rd Edition						
5. Heat Exchanger Network Synthesis, U. V Shenoy, Gulf Publishing Company.						
Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Sr. Components for Continuous Comprehensive Marks Allot	ted					

Sr.	Components for Continuous Comprehensive	Marks Allotted
No.	Evaluation	
1	Three assignments on unit-1, unit-2, unit-3 & 4	10
2	Group presentation on unit-5	05
3	LMS Test on each unit	05
	Total	20

Semester: VI (TY - B. Tech.) Chemical Engineering					
	(CHE223015A: Hea	t Transfer Operations	5	
Teaching Scheme: Credit S		Credit Scheme:3	Examination scheme:		
Theory: 3 hrs/week			In Semester Exam: 20 ma	rks	
			End Semesters Exam: 60	marks	
			Continuous Comprehensiv	e Evaluation: 20 marks	
	Total: 100 Marks				
Prerequ	isites: -Applie	ed Mathematics, Basics	of Heat Transfer, Thermoc	lynamics	
Course	Objectives:				
1. Tou	ise heat transf	ter principles to underst	and the behavior of therma	l systems.	
2. To 1	ecognize the	various applications of	heat Transfer equipments		
3. To p	provide the ba	sic knowledge in therm	al system design and to en	lighten heat transfer	
app	lications.	a completion of the con			
Course S- No	Outcomes: O	Completion of the col	urse, learner will be able to	- Dla a ang 2 a	
5r. No		Course Out	comes	DIUUIII S	
	Demonstrate	concents of cond	luction and evaluate t	he 5 Evoluate	
CO1	conduction	problem Illustrate the	renewable energy related	to	
	biomass tech	mologies	Tenewable energy related		
	Analyze the	oretical prediction of h	neat transfer coefficients a	nd 4-Analyze	
CO2	practical asp	ects of condensation.			
CO3	Apply the k	nowledge of the Proce	ess design aspects of boiling	ng 3- Apply	
	and evaporation	tors			
CO4	Select and c	lesign of jackets and c	coils for agitated vessels f	or 6-Create	
	Classify year	aspects	and their mountines as	al 2 Annular	
CO5	Classify Val	along with the design of	f Eirod Hostors and furnas	a 5- Apply	
	accessories	along with the design of	Contents.		
Unit 1	Fundament	als of Heat Conductio	$\frac{1}{1} (1.08)$	COs Manned: CO1	
General	heat Conduc	tion equation-initial a	nd boundary conditions (Conduction with heat	
source	Transient he	at conduction-I lumpe	ad system analysis-Heisle	r charts-semi-infinite	
solid-use	of shape fac	tors in conduction-2D t	transient heat conduction	Extended surface heat	
transfer	Theories of	heat transfer and analo	gy between momentum ar	ad heat transfer Heat	
transfer	outside variou	is geometries in forced	convection such as single	sphere bank of tubes	
or cylind	lers, packed a	nd fluidized beds.	convection, such as single	sphere, sum or tubes	
Unit 2	Condensati	on and Condenser Des	sign (L07)	COs Mapped: CO2	
Condens	ation of vapo	urs: theoretical prediction	on of heat transfer coefficie	ents, practical aspects.	
horizont	al versus ver	tical condensation out	side tubes, condensation	inside tubes. Process	
Design	aspects of t	otal condensers, cond	lensers with de-superheat	ing and subcooling.	
condensers of multicomponent mixture condensation of vapours in presence of non-					
condensables. condenser and reboiler design.					
Unit 3	Heat Transf	er in Boiling and Evar	ooration Processes (L07)	COs Mapped: CO3	
Heat tra	nsfer to boili	ng liquids: Process de	sign aspects of evaporator	s, natural and forced	
circulation reboilers, Finned tube exchangers, air-cooled cross flow exchangers and their					
process	design aspects	S		-	
Unit 4	Heat Trans	fer in Agitated Vessel	s and Jacketed Systems	COs Mapped: CO4	
	(L07)	-	-		

ھ

K. K. Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

Heat tra	Heat transfer in agitated vessels: coils, Types of jackets, limpet coils, calculation of heat				
transfer	coefficients, Overall heat Transfer coefficient, heating	and cooling times,			
applicati	ons to batch reactors and batch processes. Process Design	of Jacketed agitated			
vessel.					
Unit 5	Boilers and Fired Heater Design (L07)	COs Mapped: CO5			
Boilers,	classification, construction features, Boiler Accessories and Mo	ountings, Economiser,			
super-he	ater, pre-heater., Types of Fired Heaters, furnace design equation	ons, fire heater design			
features	and applications.				
REFERI	ENCE BOOKS:				
1. Funda	amentals of Engineering Heat and Mass Transfer (SI Units),	R.C. Sachdeva, New			
Age I	nternational Publishers, 5 th edition				
2. Heat	and Mass Transfer, P K Nag, McGraw-Hill publications, 3 rd Edi	tion			
1. Proce	ss Heat Transfer, D. Q. Kern., Tata McGraw Hill Publication, N	Iew Delhi, 11 th			
Editio	n				
2. Heat	Transfer, J P Holman, Tata McGraw Hill Publications, New Del	lhi, 9 th Edition			
3. A Tex	took on Heat Transfer, S. P. Sukhatme, Universities Press (Ind	dia), 4 th Edition			
4. Trans	port phenomena, Bird R.B., Stewart W.E., Lightfoot E.N, Wiley	y Publications, 2 nd			
Editio	on	,			
5. Heat	and Mass Transfer, Yunus A. Cengel., Tata McGraw Hill Public	cations, New Delhi,			
3^{rd} Ed	ition				
6 Proce	ss Equipment Design V V Mahajani and S B Umarii Trinity	v I avmi Publications			
5 th Fc	lition	y Laxini i doneations,			
7 Droce	ss Equipment Design Brownell Young Wiley				
7. 11000	7. Flocess Equipment Design, Blownen Toung, whey.				
Sn	Components for Continuous Comprehensive Evaluation	Morks Allottod			
No	Components for Continuous Comprehensive Evaluation	Marks Anotteu			
1	Three assignments on unit-1 unit-2 unit-3 & 4	10			
2	Group presentation on unit-5	05			
3	LMS Test on each Unit	05			
	Total	20			

Teaching Scheme: Credit Scheme:3 Examination scheme: In Semester Exam: 20 marks End Semesters Exam: 60 marks Continuous Comprehensive Evaluation: 20 marks Total: 100 Marks Prerequisite: Basics of Process Calculations, Unit Operations and Unit Processes Course Objectives: 1. To provide knowledge and skills for better preservation techniques, processing and value addition to agricultural products. 2. To promote research and development for food product and process and guarantee sanitation and safety of processed food items. 3. To develop awareness among the students about environmental issues and work towards sustainable developments. Course Outcomes: On completion of the course, learner will be able to:- Sr. No Course Outcomes Bloom's Level To impart knowledge in various aspects of Food Technology through Theory and Practical knowledge. 1-Knowledge CO1 Fo impart knowledge in various aspects of Food Technology through Theory and Practical knowledge. 1-Knowledge CO2 roacesting and preservation of plant foods fruits vegetables, spices, milk and dairy products. 2-Understand food industry. CO3 To acquaint concepts of food engineering and packaging in food industry. 2-Understand food industry. CO5 Gain concepts of food Processing. Principles and methods of food preservation freezing, heating, dehydration, canning, additives, fermentation, irradiation, extru	Semester VI (TY B. Tech.) Chemical Engineering CHE223015B: Food Technology							
Theory: 3 hrs/week Creat Science: Control of the control of the sector of the sec	Teach	Teaching Scheme: Credit Scheme: 3 Examination scheme:						
Interview End Semesters Exam: 60 marks Continuous Comprehensive Evaluation: 20 marks Total: 100 Marks Prerequisite: Basics of Process Calculations, Unit Operations and Unit Processes Course Objectives: I. To provide knowledge and skills for better preservation techniques, processing and value addition to agricultural products. 2. To promote research and development for food product and process and guarantee sanitation and safety of processed food items. 3. To develop awareness among the students about environmental issues and work towards sustainable developments. Course Outcomes: On completion of the course, learner will be able to:- Sr. No Course Outcomes Bloom's Level CO1 To impart knowledge in various aspects of Food Technology through Theory and Practical knowledge. CO2 To make the students familiar with the technologies of food processing and preservation of plant foods fruits vegetables, spices, milk and dairy products. CO3 To understand the principle of Unit operations and fundamentals of food engineering and packaging in food industry. 2-Understand Co5 national and international food safety and quality managements, national and international food laws and regulations as well as importance of food processing (L07) Cos Mapped: CO1 Scope and importance of food processing. Principles and methods of food preversion freezing, heating, dehydration, canning, additives, fermentation, irradiation, exerusion cooking, hyd	Theory	Theory: 3 hrs/week						
Construction of the construction of the principle Bloom's Level CO1 To provide knowledge and skills for better preservation techniques, processing and value addition to agricultural products. 1. To prowide knowledge and skills for better preservation techniques, processing and value addition to agricultural products. 2. To prowide knowledge and skills for better preservation techniques, processing and value addition to agricultural products. 3. To develop awareness among the students about environmental issues and work towards sustainable developments. Course Outcomes: On completion of the course, learner will be able to:- Sr. No Course Outcomes: On timuto of plant knowledge in various aspects of Food Technology Arcput hrough Theory and Practical knowledge. To make the students familiar with the technologies of food processing and preservation of plant foods fruits vegetables, spices, milk and dairy products. CO3 To acquaint concepts of food engineering and packaging in food industry. Co4 To acquaint concepts of food safety and quality managements, national and international food laws and regulations as well as importance of food processing (L07) Co5 pain concepts of food processing (L07) Co5 Mapped: CO1 Scope and importance of food processing. Principles and methods of food processing, s	Theor.	y. 5 1115/ WEEK		End Semesters Exam: 60	marks			
Contraction of processing and value addition to agricultural products. 2. To provide knowledge and skills for better preservation techniques, processing and value addition to agricultural products. 2. To promote research and development for food product and process and guarantee sanitation and safety of processed food items. 3. To develop awareness among the students about environmental issues and work towards sustainable developments. Course Outcomes: On completion of the course, learner will be able to:- Sr. No Course Outcomes Bloom's Level CO1 To impart knowledge in various aspects of Food Technology 3-Apply hrough Theory and Practical knowledge. 3-Apply CO2 processing and preservation of plant foods fruits vegetables, spices, milk and dairy products. 2-Understand CO3 To acquaint concepts of food engineering and packaging in food industry. 2-Understand CO4 To acquaint concepts of food safety and quality managements, inportance of food engineering and packaging in food industry. 1-Knowledge CO5 national and international food laws and regulations as well as importance of food processing (LO7) Cos Mapped: CO1 Scope and importance of food processing (LO7) Cos Mapped: CO1 Scope and importance of food processing (LO7) Cos Mapped:				Continuous Comprehensiy	e Evaluation: 20 marks			
Prerequisite: Basics of Process Calculations, Unit Operations and Unit Processes Course Objectives: 1. To provide knowledge and skills for better preservation techniques, processing and value addition to agricultural products. 2. To promote research and development for food product and process and guarantee sanitation and safety of processed food items. 3. To develop awareness among the students about environmental issues and work towards sustainable developments. Course Outcomes: Outcomes: Bloom's Level On completion of the course, learner will be able to:- Sr. No Course Outcomes CO1 To impart knowledge in various aspects of Food Technology through Theory and Practical knowledge. 3. Apply CO2 processing and preservation of plant foods fruits vegetables, spices, milk and dairy products. 1. Knowledge CO3 To acquaint concepts of food engineering and packaging in food industry. 2-Understand food industry. CO4 To again concepts of food safety and quality managements, national and international food laws and regulations as well as importance of food engineering and packaging in food industry. 1-Knowledge CO5 national and international food laws and regulations as well as importance of food processing. Principles and methods of food preservation freezing, heating, dehydration, canning, additives, fermentation, irradiation, extrusion cooking, hydrostatic pressure cooking, dielectric heating, microwave processin				Total: 100 Marks	e Evaluation. 20 marks			
The operations and control to control operations and control to conto to content to content to control to control to control to contr	Prereat	visite Basics c	f Process Calculations	Unit Operations and Unit	Processes			
Constructs: Conjectives: 1. To provide knowledge and skills for better preservation techniques, processing and value addition to agricultural products. 2. To promote research and development for food product and process and guarantee sanitation and safety of processed food items. 3. To develop awareness among the students about environmental issues and work towards sustainable developments. Course Outcomes: On completion of the course, learner will be able to:- Sr. No Bloom's Level Course Outcomes: On completion of the course, learner will be able to:- Sr. No Course Outcomes: To make the students familiar with the technologies of food processing and preservation of plant foods fruits vegetables, spices, milk and dairy products. Course To understand the principle of Unit operations and fundamentals of food engineering and its process Course Contents: Course Good engineering and packaging in food industry. Course Contents:	Course	Objectives:		, enit operations and enit	10003505			
 2. To promote research and development for food product and process and guarantee sanitation and safety of processed food items. 3. To develop awareness among the students about environmental issues and work towards sustainable developments. Course Outcomes: On completion of the course, learner will be able to:- Sr. No Course Outcomes Bloom's Level Con To impart knowledge in various aspects of Food Technology through Theory and Practical knowledge. To make the students familiar with the technologies of food processing and preservation of plant foods fruits vegetables, spices, milk and dairy products. CO3 To anderstand the principle of Unit operations and 2-Understand fundamentals of food engineering and its process CO4 To gain concepts of food safety and quality managements, national and international food laws and regulations as well as importance of food processing. (L07) CO5 Mapped: CO1 Scope and importance of food processing. Principles and methods of food preservation freezing, heating, dehydration, canning, additives, fermentation, irradiation, extrusion cooking, hydrostatic pressure cooking, dielectric heating, microwave processing, storage of food, modified atmosphere packaging. Refrigeration, freezing and drying of food, minimal processing. Unit 1 Technology of food Products (Milk, Fruits and COs Mapped: CO2 Vegetables) (L08) Sources and composition of milk, processing of market milk, standardization, toning of milk, 	1. To	provide know	ledge and skills for bett	ter preservation techniques,	processing and value			
2. To promote research and development to rood product and process and guarantee sanitation and safety of processed food items. 3. To develop awareness among the students about environmental issues and work towards sustainable developments. Course Outcomes: On completion of the course, learner will be able to:- Sr. No Course Outcomes Bloom's Level Cot To impart knowledge in various aspects of Food Technology through Theory and Practical knowledge. Cot To make the students familiar with the technologies of food processing and preservation of plant foods fruits vegetables, spices, milk and dairy products. Cot To understand the principle of Unit operations and fundamentals of food engineering and packaging in food industry. Cots aiona concepts of food safety and quality managements, lational and international food laws and regulations as well as importance of food processing. (L07) Cos Mapped: CO1 Scope and importance of food processing. Principles and methods of food preservation freezing, heating, dehydration, canning, additives, fermentation, irradiation, extrusion cooking, hydrostatic pressure cooking, dielectric heating, microwave processing, storage of food, modified atmosphere packaging. Refrigeration, freezing and drying of food, minimal processing, radiation processing. <td backaging="" colspate="" market="" milk,="" of="" standardizatio<="" th=""><th></th><td>intion to agricu</td><td>nural products.</td><td>an food and deat and ano acco</td><td>and anonator</td></td>	<th></th> <td>intion to agricu</td> <td>nural products.</td> <td>an food and deat and ano acco</td> <td>and anonator</td>		intion to agricu	nural products.	an food and deat and ano acco	and anonator		
Samilation and safety of processed food items. 3. To develop awareness among the students about environmental issues and work towards sustainable developments. Course Outcomes: On completion of the course, learner will be able to:- Sr. No Course Outcomes Bloom's Level Col1 To impart knowledge in various aspects of Food Technology through Theory and Practical knowledge. 3-Apply To make the students familiar with the technologies of food Processing and preservation of plant foods fruits vegetables, spices, milk and dairy products. Col4 To acquaint concepts of food engineering and packaging in food industry. Course Contents: Course Contents: Course Contents: Unit 1 Principles of Food Processing (L07) COs Mapped: CO1 Scope and importance of food processing. Principles and methods of food preservation freezing, heating, dehydration, canning, additives, fermentation, irradiation, extrusion cooking, hydrostatic pressure cooking, dielectric heating, microwave processing, storage of food, modified atmosphere packaging. Refrigeration, freezing and rym of food, minimal processing, radiation processing. Unit 1 Technology of food Products (Mil	2. 10	promote resea	rch and development ic	or food product and process	and guarantee			
5. To develop awareness among the students about environmental issues and work towards sustainable developments. Course Outcomes: On completion of the course, learner will be able to:- Sr. No Course Outcomes Bloom's Level CO1 To impart knowledge in various aspects of Food Technology through Theory and Practical knowledge. 3-Apply CO2 To make the students familiar with the technologies of food processing and preservation of plant foods fruits vegetables, spices, milk and dairy products. 1-Knowledge CO3 To understand the principle of Unit operations and food industry. 2-Understand CO4 To o acquaint concepts of food engineering and packaging in food industry. 2-Understand CO4 To gain concepts of food safety and quality managements, national and international food laws and regulations as well as importance of food engineering and packaging in food industry. 1-Knowledge CO5 national and international food processing (L07) COs Mapped: CO1 Scope and importance of food processing. Principles and methods of food preservation freezing, heating, dehydration, canning, additives, fermentation, irradiation, extrusion cooking, hydrostatic pressure cooking, dielectric heating, microwave processing, storage of food, modified atmosphere packaging. Refrigeration, freezing and drying of food, minimal processing, radiation processing. Unit 2 Technology of food Products (Milk, Fruits		itation and sal	ety of processed food if	tems.				
Sustainable developments. Course Outcomes: On completion of the course, learner will be able to:- Sr. No Course Outcomes Bloom's Level C01 To impart knowledge in various aspects of Food Technology through Theory and Practical knowledge. 3-Apply C02 To make the students familiar with the technologies of food processing and preservation of plant foods fruits vegetables, spices, milk and dairy products. 1-Knowledge C03 To understand the principle of Unit operations and fundamentals of food engineering and its process 2-Understand C04 To acquaint concepts of food engineering and packaging in food industry. 2-Understand C05 To gain concepts of food safety and quality managements, national and international food laws and regulations as well as importance of food engineering and packaging in food industry. 1-Knowledge Course Contents: Unit 1 Principles of Food Processing (L07) COs Mapped: CO1 Scope and importance of food processing. Principles and methods of food, methods of food, minimal processing, radiation processing. CO3 COs Mapped: CO1 Scope and importance of food Products (Milk, Fruits and processing, radiation processing. Cos Mapped: CO2 Cos Mapped: CO2 Unit 2 Technology of food Products (Milk, Fruits and processing. <th< th=""><th>3. 10</th><td>develop aware</td><td>eness among the studen</td><td>ts about environmental issu</td><td>les and work towards</td></th<>	3. 10	develop aware	eness among the studen	ts about environmental issu	les and work towards			
Course Outcomes: Sr. No Course Outcomes Bloom's Level CO1 To impart knowledge in various aspects of Food Technology 3-Apply CO2 To make the students familiar with the technologies of food 1-Knowledge CO2 processing and preservation of plant foods fruits vegetables, spices, milk and dairy products. 1-Knowledge CO3 To understand the principle of Unit operations and fundamentals of food engineering and its process 2-Understand CO4 To acquaint concepts of food engineering and packaging in food industry. 2-Understand CO5 To gain concepts of food safety and quality managements, national and international food laws and regulations as well as importance of food engineering and packaging in food industry. 1-Knowledge Course Contents: Unit 1 Principles of Food Processing (L07) COs Mapped: CO1 Scope and importance of food processing. Principles and methods of food, maintand processing, radiation processing. Unit 2 Technology of food Products (Milk, Fruits and methods of food, maintand processing. Vegetables) (L08	sus	tainable develo	opments.					
Sr. No Course Outcomes Bloom's Level CO1 To impart knowledge in various aspects of Food Technology through Theory and Practical knowledge. 3-Apply To make the students familiar with the technologies of food processing and preservation of plant foods fruits vegetables, spices, milk and dairy products. 1-Knowledge CO3 To understand the principle of Unit operations and fundamentals of food engineering and its process 2-Understand CO4 To acquaint concepts of food safety and quality managements, national and international food laws and regulations as well as importance of food processing (L07) Cos Mapped: CO1 Scope and importance of food processing. Heating, dehydration, canning, additives, fermentation, irradiation, extrusion freezing, heating, dehydration, canning, additives, fermentation, irradiation, extrusion cooking, hydrostatic pressure cooking, dielectric heating, microwave processing, storage of food, modified atmosphere packaging. Refrigeration, freezing and drying of food, minimal processing, radiation processing. Cos Mapped: CO2 Unit 2 Technology of food Products (Milk, Fruits and Vegetables) (L08) Cos Mapped: CO2 Sources and composition of milk, processing of market milk, standardization, toning of milk, st	Course	Outcomes:		-1-1				
Sr. No Course Outcomes Bioom's Level CO1 To impart knowledge in various aspects of Food Technology through Theory and Practical knowledge. 3-Apply CO2 To make the students familiar with the technologies of food processing and preservation of plant foods fruits vegetables, spices, milk and dairy products. 1-Knowledge CO3 To understand the principle of Unit operations and fundamentals of food engineering and its process 2-Understand CO4 To acquaint concepts of food safety and quality managements, into and international food laws and regulations as well as importance of food engineering and packaging in food industry. 1-Knowledge CO5 national and international food processing (L07) COs Mapped: CO1 Scope and importance of food processing. Principles and methods of food preservation freezing, heating, dehydration, canning, additives, fermentation, irradiation, extrusion cooking, hydrostatic pressure cooking, dielectric heating, microwave processing, storage of food, modiFied atmosphere packaging. Refrigeration, freezing and drying of food, minimal processing, radiation processing. COs Mapped: CO2 Unit 2 Technology of food Products (Milk, Fruits and Vegetables) (L08) COs Mapped: CO2 Sources and composition of milk, processing of market milk, standardization, toning of mil	On com	pletion of the	course, learner will be	able to:-				
CO1 10 impart knowledge in various aspects of Food Technology through Theory and Practical knowledge. 3-Apply CO2 To make the students familiar with the technologies of food processing and preservation of plant foods fruits vegetables, spices, milk and dairy products. 1-Knowledge CO3 To understand the principle of Unit operations and fundamentals of food engineering and its process 2-Understand CO4 To acquaint concepts of food engineering and packaging in food industry. 2-Understand CO5 To gain concepts of food safety and quality managements, national and international food laws and regulations as well as importance of food engineering and packaging in food industry. 1-Knowledge CO5 Principles of Food Processing (L07) COs Mapped: CO1 Scope and importance of food processing. Principles and methods of food preservation freezing, heating, dehydration, canning, additives, fermentation, irradiation, extrusion cooking, hydrostatic pressure cooking, dielectric heating, microwave processing, storage of food, modified atmosphere packaging. Refrigeration, freezing and drying of food, minimal processing. radiation processing. Unit 2 Technology of food Products (Milk, Fruits and Cos Mapped: CO2 Vegetables) (L08) Sources and composition of milk, processing of market milk, standardization, toning of milk, to for the form of	Sr. No			comes	Bloom's Level			
CO2 To make the students familiar with the technologies of food processing and preservation of plant foods fruits vegetables, spices, milk and dairy products. 1-Knowledge CO3 To understand the principle of Unit operations and fundamentals of food engineering and its process 2-Understand CO4 To acquaint concepts of food engineering and packaging in food industry. 2-Understand CO5 To gain concepts of food safety and quality managements, national and international food laws and regulations as well as importance of food processing (L07) 1-Knowledge Course Contents: Cors Mapped: CO1 Scope and importance of food processing (L07) COs Mapped: CO1 Scope and importance of food processing. Principles and methods of food preservation freezing, heating, dehydration, canning, additives, fermentation, irradiation, extrusion cooking, hydrostatic pressure cooking, dielectric heating, microwave processing, storage of food, modiFied atmosphere packaging. Refrigeration, freezing and drying of food, minimal processing. Unit 2 Technology of food Products (Milk, Fruits and consplex) (L08) COs Mapped: CO2 Sources and composition of milk, processing of market milk, standardization, toning of milk, the definition of milk is processing of market milk, standardization, toning of milk, the definition of milk	CO1	through Theo	owledge in various as ry and Practical knowle	edge.	3-Apply			
CO2 processing and preservation of plant foods fruits vegetables, spices, milk and dairy products. CO3 To understand the principle of Unit operations and fundamentals of food engineering and its process 2-Understand CO4 To acquaint concepts of food engineering and packaging in food industry. 2-Understand CO4 To acquaint concepts of food safety and quality managements, national and international food laws and regulations as well as importance of food engineering and packaging in food industry. 1-Knowledge Course Contents: Unit 1 Principles of Food Processing (L07) COs Mapped: CO1 Scope and importance of food processing. Principles and methods of food preservation freezing, heating, dehydration, canning, additives, fermentation, irradiation, extrusion cooking, hydrostatic pressure cooking, dielectric heating, microwave processing, storage of food, modified atmosphere packaging. Refrigeration, freezing and drying of food, minimal processing. CO1 Unit 2 Technology of food Products (Milk, Fruits and Cos Mapped: CO2 Vegetables) (L08) Sources and composition of milk, processing of market milk, standardization, toning of milk, toning of milk		To make the	students familiar with	h the technologies of food	l 1-Knowledge			
spices, milk and dairy products. Image: spices, milk and dairy products. CO3 To understand the principle of Unit operations and fundamentals of food engineering and its process 2-Understand CO4 To acquaint concepts of food engineering and packaging in food industry. 2-Understand To gain concepts of food safety and quality managements, national and international food laws and regulations as well as importance of food engineering and packaging in food industry. 1-Knowledge Course Contents: Unit 1 Principles of Food Processing (L07) COs Mapped: C01 Scope and importance of food processing. Principles and methods of food preservation freezing, heating, dehydration, canning, additives, fermentation, irradiation, extrusion cooking, hydrostatic pressure cooking, dielectric heating, microwave processing, storage of food, modiFied atmosphere packaging. Refrigeration, freezing and drying of food, minimal processing. Unit 2 Technology of food Products (Milk, Fruits and Vigge of food, modified atmosphere packaging. Refrigeration, freezing and drying of food, minimal processing. Sources and composition of milk, processing of market milk, standardization, toning of milk, to not of milk, to not of milk, to not of milk, to not of milk.	CO2	processing an	nd preservation of pla	nt foods fruits vegetables	,			
CO3 To understand the principle of Unit operations and fundamentals of food engineering and its process 2-Understand CO4 To acquaint concepts of food engineering and packaging in food industry. 2-Understand CO5 To gain concepts of food safety and quality managements, national and international food laws and regulations as well as importance of food engineering and packaging in food industry. 1-Knowledge CO5 To racipation of food processing (L07) COs Mapped: C01 Scope and importance of food processing. Principles and methods of food preservation freezing, heating, dehydration, canning, additives, fermentation, irradiation, extrusion cooking, hydrostatic pressure cooking, dielectric heating, microwave processing, storage of food, modified atmosphere packaging. Refrigeration, freezing and drying of food, minimal processing. COs Mapped: C02 Unit 2 Technology of food Products (Milk, Fruits and Vigetables) (L08) COs Mapped: C02 Sources and composition of milk, processing of market milk, standardization, toning of milk, Cos Mapped: C02		spices, milk a	nd dairy products.					
CO3 fundamentals of food engineering and its process CO4 To acquaint concepts of food engineering and packaging in food industry. CO5 To gain concepts of food safety and quality managements, national and international food laws and regulations as well as importance of food engineering and packaging in food industry. 1-Knowledge CO5 Principles of Food Processing (L07) COs Mapped: CO1 Scope and importance of food processing. Principles and methods of food preservation freezing, heating, dehydration, canning, additives, fermentation, irradiation, extrusion cooking, hydrostatic pressure cooking, dielectric heating, microwave processing, storage of food, modified atmosphere packaging. Refrigeration, freezing and drying of food, minimal processing. COs Mapped: CO2 Unit 2 Technology of food Products (Milk, Fruits and Viggetables) (L08) COs Mapped: CO2 Sources and composition of milk, processing of market milk, standardization, toning of milk,	CO3	To understa	and the principle of	of Unit operations and	l 2-Understand			
CO4 To acquaint concepts of food engineering and packaging in food industry. 2-Understand CO5 To gain concepts of food safety and quality managements, national and international food laws and regulations as well as importance of food engineering and packaging in food industry. 1-Knowledge Unit 1 Principles of Food Processing (L07) COs Mapped: CO1 Scope and importance of food processing. Principles and methods of food preservation freezing, heating, dehydration, canning, additives, fermentation, irradiation, extrusion cooking, hydrostatic pressure cooking, dielectric heating, microwave processing, storage of food, modiFied atmosphere packaging. Refrigeration, freezing and drying of food, minimal processing. COs Mapped: CO2 Unit 2 Technology of food Products (Milk, Fruits and Vegetables) (L08) COs Mapped: CO2 Sources and composition of milk, processing of market milk, standardization, toning of milk, toning of milk, standardization, tonin	005	fundamentals	of food engineering an	nd its process				
CO5To gain concepts of food safety and quality managements, national and international food laws and regulations as well as importance of food engineering and packaging in food industry.1-KnowledgeCourse Contents:Unit 1Principles of Food Processing (L07)COs Mapped: CO1Scope and importance of food processing. Principles and methods of food preservation freezing, heating, dehydration, canning, additives, fermentation, irradiation, extrusion cooking, hydrostatic pressure cooking, dielectric heating, microwave processing, storage of food, modified atmosphere packaging. Refrigeration, freezing and drying of food, minimal processing.COs Mapped: CO1Unit 2Technology of food Products (Milk, Fruits and Vegetables) (L08)COs Mapped: CO2	CO4	To acquaint food industry	concepts of food eng.	ineering and packaging in	a 2-Understand			
CO5national and international food laws and regulations as well as importance of food engineering and packaging in food industry.Course Contents:Unit 1Principles of Food Processing (L07)COs Mapped: CO1Scope and importance of food processing. Principles and methods of food preservation freezing, heating, dehydration, canning, additives, fermentation, irradiation, extrusion cooking, hydrostatic pressure cooking, dielectric heating, microwave processing, storage of food, modified atmosphere packaging. Refrigeration, freezing and drying of food, minimal processing, radiation processing.Unit 2Technology of food Products (Milk, Fruits and Vegetables) (L08)COs Mapped: CO2		To gain con	cepts of food safety	and quality managements	. 1-Knowledge			
importance of food engineering and packaging in food industry.Course Contents:Unit 1Principles of Food Processing (L07)COs Mapped: C01Scope and importance of food processing. Principles and methods of food preservation freezing, heating, dehydration, canning, additives, fermentation, irradiation, extrusion cooking, hydrostatic pressure cooking, dielectric heating, microwave processing, storage of food, modified atmosphere packaging. Refrigeration, freezing and drying of food, minimal processing, radiation processing.COs Mapped: C02Unit 2Technology of food Products (Milk, Fruits and Vegetables) (L08)COs Mapped: C02Sources and composition of milk, processing of market milk, standardization, toning of milk,Standardization, toning of milk,	CO5	national and	international food laws	and regulations as well as				
Course Contents:Unit 1Principles of Food Processing (L07)COs Mapped: CO1Scope and importance of food processing. Principles and methods of food preservation freezing, heating, dehydration, canning, additives, fermentation, irradiation, extrusion cooking, hydrostatic pressure cooking, dielectric heating, microwave processing, storage of food, modified atmosphere packaging. Refrigeration, freezing and drying of food, minimal processing, radiation processing.COs Mapped: CO1Unit 2Technology of food Products (Milk, Fruits and Vegetables) (L08)COs Mapped: CO2Sources and composition of milk, processing of market milk, standardization, toning of milk,Cos milk, standardization, toning of milk,		importance of	f food engineering and	packaging in food industry				
Unit 1Principles of Food Processing (L07)COs Mapped: CO1Scope and importance of food processing. Principles and methods of food preservation freezing, heating, dehydration, canning, additives, fermentation, irradiation, extrusion cooking, hydrostatic pressure cooking, dielectric heating, microwave processing, storage of food, modified atmosphere packaging. Refrigeration, freezing and drying of food, minimal processing, radiation processing.COs Mapped: CO1Unit 2Technology of food Products (Milk, Fruits and Vegetables) (L08)COs Mapped: CO2Sources and composition of milk, processing of market milk, standardization, toning of milk,COs Mapped: CO2		I I I I I I I I I I	Course	e Contents:				
Scope and importance of food processing. Principles and methods of food preservation freezing, heating, dehydration, canning, additives, fermentation, irradiation, extrusion cooking, hydrostatic pressure cooking, dielectric heating, microwave processing, storage of food, modified atmosphere packaging. Refrigeration, freezing and drying of food, minimal processing, radiation processing.Unit 2Technology of food Products (Milk, Fruits and Vegetables) (L08)COs Mapped: CO2Sources and composition of milk, processing of market milk, standardization, toning of milk,	Unit 1	Principle	s of Food Processing ((L07)	COs Mapped: CO1			
freezing, heating, dehydration, canning, additives, fermentation, irradiation, extrusion cooking, hydrostatic pressure cooking, dielectric heating, microwave processing, storage of food, modified atmosphere packaging. Refrigeration, freezing and drying of food, minimal processing, radiation processing. Unit 2 Technology of food Products (Milk, Fruits and Vegetables) (L08) Sources and composition of milk, processing of market milk, standardization, toning of milk,	Scope	and importance	e of food processing.	. Principles and methods	of food preservation			
cooking, hydrostatic pressure cooking, dielectric heating, microwave processing, storage of food, modified atmosphere packaging. Refrigeration, freezing and drying of food, minimal processing, radiation processing.Unit 2Technology of food Products (Milk, Fruits and Vegetables) (L08)COs Mapped: CO2Sources and composition of milk, processing of market milk, standardization, toning of milk,	freezing	g, heating, de	ehydration, canning,	additives, fermentation,	irradiation, extrusion			
food, modified atmosphere packaging. Refrigeration, freezing and drying of food, minimal processing, radiation processing. Unit 2 Technology of food Products (Milk, Fruits and Vegetables) (L08) COs Mapped: CO2 Sources and composition of milk, processing of market milk, standardization, toning of milk,	cooking	, hydrostatic	pressure cooking, diele	ectric heating, microwave	processing, storage of			
processing, radiation processing. Unit 2 Technology of food Products (Milk, Fruits and Vegetables) (L08) COs Mapped: CO2 Sources and composition of milk, processing of market milk, standardization, toning of milk,	food, n	nodified atmos	phere packaging. Refr	igeration, freezing and dry	ing of food, minimal			
Unit 2Technology of food Products (Milk, Fruits and Vegetables) (L08)COs Mapped: CO2Sources and composition of milk, processing of market milk, standardization, toning of milk,	process	ing, radiation p	processing.		C ,			
Vegetables) (L08) Sources and composition of milk, processing of market milk, standardization, toning of milk,	Unit 2	Technolo	gy of food Products (1	Milk, Fruits and	COs Mapped: CO2			
Sources and composition of milk, processing of market milk, standardization, toning of milk,		Vegetable	es) (L08)		11			
	Sources and composition of milk, processing of market milk, standardization, toning of milk,							
homogenization, pasteurization, sterilization, storage, transportation and distribution of milk.	homogenization pasteurization sterilization storage transportation and distribution of milk							
Milk product processing-cream. Principles and methods of fruit and vegetable preservation.								
Composition and related quality factors for processing. Principles of storage of fruits and								
vegetables. Types of storage: natural, ventilated low temperature storage, preservation of	vegetab							
fruits and vegetables by heat, chemicals, sugar, salt, fermentation, drving etc. canning of	fruits a							
fruits and vegetables, tin cans, glass containers seaming technology, asentic canning	fruits a							
technology. other value added products from milk and fruit and vegetables.	technol	ogy. other val	ue added products from	milk and fruit and vegetal	bles.			
Unit 3 Principles of Food Engineering (L07) COs Mapped: CO3	Unit 3	Principle	s of Food Engineering	g (L07)	COs Mapped: CO3			

K. K. Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

Unit operation in food engineering processing of food grains, theory of size reduction							
equipment's and effect of size reduction on foods, evaporation extrusion, hot air dehydration,							
baking, ro	baking, roasting and hot oil frying theory, equipment's, applications and effect on food						
materials for freezing / freeze drying and freeze concentration.							
Unit 4	Food Packaging (L07)	COs Mapped: CO4					
Introductio	n to packaging. Packaging operation, package-functions a	nd design. Principle in					
the develop	pment of protective packaging. Deteriorative changes in fo	odstuff and packaging					
methods for	or prevention, shelf life of packaged foodstuff, methods to	extend shelf-life. Food					
containers-	rigid containers, corrosion of containers (tin plate). Flexib	le packaging materials					
and their	properties. food packaging materials and their properties.	Food packages-bags,					
pouches, v	vrappers, carton and other traditional package, containers-	wooden boxes, crates,					
plywood at	ad wire bound boxes, corrugated and fibre board boxes, text	lie and paper sacks.					
Unit 5	Food Quality Assurance (LU7)	COs Mapped: CO5					
Objectives	, importance and functions of quality control. Methods of	of quality, concepts of					
rheology,	assessment of food materials-fruits, vegetables, cereals,	dairy products, meat,					
poultry, eg	g and processed food products. Food regulations, grades an	d standards, concept of					
Codex Ali	mentarious/HACCP/USFDA/ISO 9000 series etc. Food	adulteration and food					
safety, basi	s, trends and composition of India's foreign trade.						
1 Physical	CE DUURS:	vis Woodhead					
1. Fliysica Dublichi	ng 1 st Edition	is, woodlead					
2 Fundam	entals of food Engineering S. E. Charm Avi Publishing Co	Inc. 2nd Revised					
Edition	entais of food Englicering, 5. E Charm. Avi i donsning Co	The, 2hd Revised					
3. Encyclo	pedia of food Engineering, C W Hall, A W Farral, A L Ripr	en. Avi Publishing					
Co Inc	r,,,,,,,,,,						
4. Food Sc	ience and Processing Technology Vol I & II, Mridula Miraj	kar, Menon Sreelata, S					
Mridula	Menon Mirajkar, Kanishka Publishing House.						
5. Food Pr	ocessing Technology Principles and Practice, P J Fellows, V	Voodhead Publishing,					
4 th Editi	on	_					
6. Handbo	ok of Food Engineering, Dennis R. Heldman, Daryl B. Lund	l, Cristina Sabliov,					
CRC Pr	ess, 3 rd Edition.						
7. Handbo	ok of Analysis and Quality Control for Fruits and Vegetable	Products, S.					
Ranganna, McGraw Hill Education, 3 rd Edition.							
8. A Handbook of Food Packaging, Frank A. Paine, Heather Y. Paine, Springer-Verlag New							
York Inc., 2 nd Edition							
		~					
<u> </u>	Guidelines for Continuous Comprehensive Evaluation of The	eory Course					
Sr.	Components for Continuous Comprehensive	Marks Anotted					
1 NO.	Evaluation Three assignments on unit 1 unit 2 unit 2 & 4	10					
1	Group presentation on unit 5	10					
2	I MS Test on each unit	05					
3	LIVIS TEST OII CACH UIIIL Tatal	20					
	Iotal	20					

Semester: VI (TY - B. Tech.) Chemical Engineering CHE223016A · Lab work in Renewable Energy					
Teachin	g Scheme:	Credit Scheme:1	Examination sc	heme:	
Practical	: 2hrs. /Week		TW: 25 marks		
			Oral: 25 marks		
			Total: 50 Marks		
Prerequis	sites: Basic knowledge of	of Chemistry, Physics	Thermodynamics	, Fluid Mechanics, Heat	
Transfer,	Process Engineering, En	vironmental Science.			
Course O	bjectives:				
1. To	o understand energy sour	ces, including renewa	bles, and energy c	onversion processes.	
2. To	o explore biomass, solar,	and waste-to-energy	technologies, and a	applications.	
3. To	o study hydrogen produc	tion, storage, and its u	use in fuel cells and	l transportation.	
Course O	outcomes:				
Oı	n completion of the cour	se, learner will be able	e to:-		
Sr. No.		Course Outcomes		Bloom's Level	
CO1	Classify various energy s	ources, evaluate their	availability, and	1-Knowledge	
cor c	ompare different method	ls of energy conversion	n.		
CO2	Illustrate the renewable energy related to biomass technologies. 1-Knowledge				
CO3	Illustrate conversion technologies for solar and its applications. 1-Knowledge				
CO4	Understand waste-to-energy conversion processes and their			2-Understand	
e	nvironmental impacts, p				
CO5 U	Inderstand the fundament	ntals of hydrogen ene	ergy systems and	2-Understand	
the production processes of hydrogen energy.					

List of Suggested Experiments / Assignments					
Sr.	Experiments / Assignments CO				
No.		Mapped			
1	Comparative Analysis of Renewable and Non-Renewable Energy	CO1			
	Sources.				
2	Case study of renewable energy sources and their conversion	CO1			
	processes.				
3	Comparative Analysis of Power Generation Methods.	CO1			
4	Efficiency Study of Conventional Energy Systems.	CO1			
5	Case study of Waste-to-Energy Facilities and Environmental	CO4			
	Management.				
6	Case study of Hydrogen Fuel Cell Applications in Transportation.	CO5			
7	Case study of challenges and opportunities in renewable energy	CO4			
	development.				
8	Case study in future trends, and innovations in renewable energy	CO4			
	technologies.				
Guidelines for Termwork Assessment					
Term work assessment is to be based on overall performance of students, which includes the					
following parameters: timely completion of tasks, performance quality, punctuality, participation,					
and contribution in the experiments. Students will be evaluated based on the experiment, report					
and presentation.					

Semester: VI (TY - B. Tech.) Chemical Engineering				
	CHE223016	B: Lab work in Che	emical Process Synt	hesis
Teachi	ng Scheme:	Credit Scheme:1	Examination scheme	:
Practica	al: 2Hrs. /Week		TW: 25 marks	
			Oral: 25 marks	
			Total: 50 Marks	
Prerequ	isite: Basic Concepts of	f heat transfer, mass tran	nsfer, design.	
Course	Objectives:			
1. Tou	inderstand how to invent	t chemical process flow:	sheets	
2. To 1	understand how to devel	op process alternatives;	how to generate them a	nd how to quickly
scre	en the alternatives.			
Course	Outcomes: On completi	on of the course, learner	r will be able to:-	
Sr.		Course Outcomes		Bloom's
No.				
Interprete to process		development, different considerations, overall		2-Understand
COI	process design, hierarchy of process design			
CON	Differentiate types of r	2-Understand		
02	Separation techniques.			
CO3	Apply the pinch techno	ology in order to optimi	ize the energy usage in	3-Apply
003	industries			
CO4	Design distillation sequencing, heat integration of sequences of			6- Create
04	simple distillation colu	mns.		
CO5	Evaluate efficient He	at Exchanger Network	s: Pinch Technology,	5-Evaluate
005	problem table algorithm	n, Threshold problems e	etc.	
Suggested List of Laboratory Assignments:				
Term wo	ork and oral will be base	d on technical report pr	repared by individual or	small groups (2-
3) of students, focusing on Case study on Choice of reactor based on performance of reactor.				
Choice of reactor based on reactor model, Choice of Separators used in chemical process				
industrie	s and Distillation seque	ncing using simple colu	umns and their applicati	on in petroleum
industrie	s. Students are expected	d to deliver seminar pro	esentation using audio-v	isual techniques
on the to	pic. Students will be eva	aluated based on the exp	periment, report and pres	entation.

Semester VI (TY - B. Tech.) Chemical Engineering					
		CHE223017: Pro	cess Instrumentation	1	
Teachi	ng Scheme:	Credit Scheme: 3	Examination scheme:		
Theory	: 3 hrs/week		In Semester Exam: 20 n	narks	
			End Semesters Exam: 6	0 mai	ks
			Continuous Comprehens	sive E	valuation: 20 marks
			Total: 100 Marks		
Prerequ	isites:- basic	knowledge of Fluid Me	echanics, Physics / Basic	Elect	rical Engineering,
material	and energy ba	alance			
Course	Objectives:				
1.To g	give a detail	led knowledge on tr	ansducer characteristics	and	uncertainties in
measu	urement, app	olication of different se	ensors /transducers their	signa	l conditioning and
final c	control eleme	nts for instrumentation	and control systems		
2. To in	npart knowled	lge about the various t	echniques used for the n	neasu	rement of primary
indust	trial paramete	ers like flow, level, temp	perature, pressure etc.		
3. To stu	udy different of	chemical analysis methe	ods for chemical characte	erizati	ion.
Course	Outcomes:				
On comp	pletion of the	course, learner will be a	able to:-		
Sr. No		Course (Jutcomes		Bloom's Level
C01	Select the in	strument for various ch	emical processes.		2-Undestand
CO2	Use tempera	ture measuring instrum	ents in chemical industry	' .	3-Apply
CO3	Use pressure	e measuring instruments	s in chemical industry.		3-Apply
CO4	Measure the	flow and level using va	arious measuring instrum	ents	3-Apply
	in chemical i	industry.		-	A
CO5	Distinguish	between various analy	ytical methods possible	for	2-Undestand
	chemical ana	alysis.	~		
T T 9 / 4		Course	e Contents:		M 1 CO1
Unit I	Process In	istrumentation: Introdu			s Mapped: COI
Importar	ice of instru	ments in chemical pi	rocess industries, Need	and	scope of process
instrume	intation, class	Silication of process v	ariables, measurement p	Droble	em analysis, basic
measure	ment terms, C	Jeneral classification (of industrial instruments,	Func	(reareth first and
instrume	nts, static and	a Dynamic characteris	tics of measuring instruction	nents	(Zeroth, first, and
second-c	order instrume	ion) Indicating and reas	ement system configuration	on, tr	ansoucer elements
(types an	Tomporat	une Measuring Instrum	ording type instruments.	CO	a Mannadi CO2
Tempera	Temperat	ring Instruments Int	roduction classification		morature scales
Mechani	cal Temperat	ture Sensors- filled sy	iouucion, classification	nanci	on Thermometers
Flectrica	l Temperatur	e Sensors-RTD thermi	stors thermocouples Ra	diatic	on sensors- optical
and radiation Solid-State Sensors Quartz Sensors					
Init 3	Pressure	Measuring Instruments	(L07)	CO	s Manned: CO3
Introduction, classification, pressure Scales, Mechanical pressure elements liquid column					
element, elastic element, design of Bourdon Spring elements. Vacuum measurements					
electronic pressure sensors. High pressure sensors like dead weight, strain gauge and					
capacitance.					
Unit 4 Level and Flow Measuring Instruments (L07) COs Mapped: CO4					
Unit 4	Level and	Flow Measuring Instru	ments (L07)	CO	s Mapped: CO4
Unit 4 Level m	easuring inst	Flow Measuring Instru ruments: Introduction.	ments (L07) classification, Ball-float	mec	s Mapped: CO4 hanisms: displacer
Unit 4 Level m Level m	easuring instr easuring instr	Flow Measuring Instru ruments: Introduction, ruments: Introduction,	ments (L07) classification, Ball-float classification, Ball-float	mec ¹	s Mapped: CO4 hanisms: displacer hanisms: displacer

Force balance diaphragm systems: electromagnetic type, electrical capacitance type, impedance type. Bulk Solids Level Systems: Pressure sensitive, weighing capacitance bridge, ultrasonic. Flow measurement: Head flow meters: Orifice meter, Venturimeter, pitot tube. Variable area flow meters: Rotameter, orifice & tapered plug meters, piston-type, Vortex Shedding Thermal Mass Flow sensors.

Unit 5Instrumental Methods of Chemical Analysis (L08)COs Mapped: CO5Introduction, classification, basic components of analytical instruments, Absorption and
Emission Spectrometric Methods: UV, visible and infrared (IR), AAS, MS, Refractometry,
Chromatographic Methods: GC, LC, HPLC, Fundamentals of Imaging Techniques: SEM
TEM, Electrochemical methods: measurement of pH, colorimetric, conducto-metric,
potentiometric, Process instruments and automatic on-line analysis, Thermal Methods: TGA,
DTA, DSC

REFERENCE BOOKS:

- 1. Instrument Engineers' Handbook (Process Measurement)- Bella G. Liptak, CRC PRESS
- 2. Instrumentation devices and systems- Rangan, Sharma, Mani, Tata McGraw Hill Publishing Co. Ltd.
- 3. Instrumental methods of analysis Willard, Merritt, Dean, Settle, CBS Publishers and Distributors
- 4. Instrumental approach to Chemical Analysis- Shrivastava, Jain, S. Chand and Co.
- 5. Handbook of Analytical Instruments- Khandpur, Tata McGraw Hill Publishing Co. Ltd..
- 6. Industrial Instrumentation, Donald P. Eckman CBS Publishers and Distributors Pvt. Ltd.

	Guidelines for Continuous Comprehensive Evaluation of Theory	y Course				
Sr.	Sr. Components for Continuous Comprehensive Evaluation					
No.						
1	Three assignments on unit-1, unit-2, unit-3 & 4	10				
2	Group presentation on unit-5	05				
3	LMS Test on each unit	05				
	Total	20				

Semester: VI (TY - B. Tech.) Chemical Engineering						
CHE223018: Optimization Techniques						
Teachi	Feaching Scheme:Credit Scheme:2Examination scheme:					
Theory	Theory: 2 hrs/week Continuous Comprehensive Evaluation: 50 marks					
Prerequ	isites: Mather	natical skills, Programm	ning Skills, Algorithms and	d Tech	niques, Domain-	
Specific	Knowledge		8, 8		1	
Course	Objectives:					
1. To ga	in a comprehe	ensive understanding of	optimization principles.			
2. To ap	ply optimizati	on algorithms and meth	odologies to solve chemica	l engir	neering	
optim	ization proble	ms.				
3. To an	alyze and Eva	luate Optimization Solu	tions			
Course	Outcomes: O	n completion of the co	urse, learner will be able t	0:-		
Sr. No		Course Ou	tcomes		Bloom's Level	
CO1	Understand	optimization terminol	ogy and principles and a	apply	2- Understand	
	them to form	nulate optimization pro	blems			
CO2	Apply mathe and Lagrang	ematical techniques su e multipliers to solve o	ich as gradient-based me potimization problems.	thods	3- Apply	
	Demonstrate	e the ability to f	formulate and solve l	inear	3- Apply	
CO3	programming problems using simplex method and interpret				11.2	
	optimization	results in engineering	applications	-		
CO4	Apply non	linear optimization	methods to solve con	nplex	3- Apply	
04	engineering	optimization problems				
C05	Implement	optimization softwa	re in engineering, pr	ocess	3- Apply	
	synthesis, an	nd control in real-world	scenarios.			
T T 9 / 4		Cours	e Contents:	00	M 1 CO1	
Unit I	Introduc	tion to Optimization (<u>(L04)</u>		Mapped:COI	
Overview	of optimizat	tion in engineering, Ty	pes of optimization prob	lems:	linear, nonlinear,	
integer, d	iynamic, Opti	mization terminology a	and concepts, Formulating	; optin	inzation problems	
In muusu		ng atical Tools for Ontim	vization (I 05)	COs	Manned CO2	
Unconstr	ained optim	ization: gradient-base	ad methods Newton's	meth	od Constrained	
ontimizat	ion: Lagrange	multipliers KKT con	ditions Convex optimizat	ion ba	sice	
Unit 3	Linear P	rogramming (LP) (L(15)		Manned:CO3	
Formulat	ing LP proble	ems. Simplex method	and its variants. Duality	in line	ar programming	
Sensitivit	v analysis and	d interpretation of resul	ts.		a programmig,	
Unit 4	Nonlinea	r Programming (NLF	P) (L05)	COs	Mapped:CO4	
Basics of nonlinear optimization. Gradient-based methods: steepest descent. Newton's method.						
Derivative-free optimization techniques, Convergence and global optimization.						
Unit 5Applications of Engineering (L05)Optimization inIndustrialCOs Mapped:CO5						
Ontimiza	Engineering (LUS)					
control (Case studies	and real-world applic	eations Integration of or	punnz ntimiza	ation software in	
engineering practice						
REFERI	ENCE BOOK	S:				
1. Ont	imization of (Chemical Process Tho	nas Edgar David Himm	elblau	McGraw-Hill	
Education, 2 nd Edition						

- 2. Engineering Optimization: Theory and Practice, Singiresu S. Rao, John Wiley & Sons, 4th Edition
- 3. Optimization for Engineering Design: Algorithms and Examples, Deb K, Prentice Hall India Learning Private Limited, 2nd Edition
- 4. Applied Mathematical Methods for Chemical Engineer, Norman W. Loney, CRS Press, 3rd Edition
- 5. Optimization: Theory and Practice, M.C. Joshi and Kannan M. Moudgalya, Alpha Science International Ltd, 1st Edition.

	Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Sr.	Components for Continuous Comprehensive	Marks Allotted					
No.	Evaluation						
1	Three assignments on unit-1, unit-2, unit-3 & 4	30					
2	Group presentation on unit-5	10					
3	LMS Test on each unit	10					
	Total	50					

Semester VI (TY - B. Tech.) Chemical Engineering				
	CHE223019: C	omputer Aided Chemical H	Engineeri	ng
Teaching	Scheme:	Credit Scheme:2	Examination scheme:	
Tutorial: 1	Hr. /Week	Tutorial:1	Tutorial:	25 marks
Practical: 2	2Hrs. /Week	Practical:1	Practical:	25 marks
Duono guiaid	has Free domental Verarel	dae of Mothematics Draces Col	Total: 50	Marks
and unit on	erations and unit process	edge of Mathematics, Process Cal	culations, I	nermodynamics
Course Ob	iectives.	ses, Reaction Engineering etc.		
1. To ac	quire basic understandin	g of the programming to solve ch	nemical eng	ineering problems
2. To a	oply the knowledge ch	emical process simulation for	solving che	emical engineering
proble	ems	-	U	c c
3. To ap	ply numerical Techniq	ues in chemical engineering.		
Course Ou	tcomes: On completion	of the course, learner will be able	e to:-	
Sr. No.		Course Outcomes		Bloom's Level
COI Un	derstand fundamentals of	of modelling and simulation	-1	2- Understand
CO2 An eng	alyze theory and apply p gineering problems	programming knowledge to solve	chemical	4- Analyze
CO3 Sin	nulate chemical proce	sses using chemical process s	simulation	5-Evaluate
L	Suggeste	ed List of Laboratory Assignme	nts:	
Minimum 10 Practical Assignments must be completed using computational as well as simulation softwares. Aspen plus, Hysys, ChemCAD, EnviroPro, ANSYS, Mathcad, Matlab, Unisim, DWSim etc. can be used for solving practical assignments				
Sr. No.	La	aboratory Experiments		COs Mapped
1.	Computer program for matrix operations	or solving basic linear algebra	involving	CO1, CO2
2.	Computer program for	solving non-linear algebraic equ	ation/s	CO1, CO2
3.	Computer program f (distillation, gas absorp	or solving steady state staged of the staged of the staged of the straction, etc.)	l operation	CO1, CO2
4.	Computer program fo (distillation, gas absorp	r solving un-steady state staged otion, L-L extraction, etc.)	d operation	CO1, CO2
5.	Computer program for	plotting P-x-y and T-x-y diagram	n	CO1, CO2
6. Computer program for design of reactor/ heat exchangers. CO1, CO2 distillation column/or any chemical equipment				
7. Computer program for solving ODE or PDE using finite difference CO1, CO2 method				CO1, CO2
8. Simulation of mass transfer equipment using simple and rigorous CO3 methods				CO3
9. Simulation of product synthesis using different reactors CO3			CO3	
10.	Simulation of steady st	ate flow sheet synthesis		CO3
11.	Simulation of dynamic	flow sheet synthesis		CO3
12.	Simulation of fluid f transport	flow problems with or without	heat/mass	CO3

Guidelines for Laboratory Conduction

- 1. Teacher will brief the given problem statement to students, its objectives and outcome.
- 2. Students will solve the allotted problem analytically if else and then using simulator.
- 3. After solving problem, students will check their simulated results from the teacher.
- 4. Students will then complete the write up.

Guidelines for Student's Lab Journal

Write-up should include title, software used, concept utilized, course useage and problem statement, conclusion, simulation steps, simulated results if any.

Guidelines for Termwork Assessment

- 1. Each experiment from lab journal is assessed for 30 marks based on three rubrics.
- 2. Rubric R-1 is for timely completion, R-2 for understanding and R-3 for presentation/journal. Each rubric carries 10 marks.

Semester VI (TY - B. Tech.) Chemical Engineering					
	CHE223020: Project Phase I				
Teachin	Teaching Scheme:Credit Scheme: 1Examination scheme:				
Practica	al : 02 hrs/week		Term work: 50) Marks	
Prerequ	isite: Courses of C	hemical Engineering			
	UDJectives:	a concepts & broad principles of r	rojota		
1.100	understand the v	alue of achieving perfection	in project im	elementation &	
com	pletion.	and of activity perfection	in project ing		
3. To	apply the theoretic	cal concepts to solve real life	problems with	teamwork and	
Mul	tidisciplinary appro	oach.			
4. To c	lemonstrate profess	sionalism with ethics; present effe	ective communi	cation skills and	
relat	te engineering issue	es to broader societal context.			
Course	Outcomes: on com	pletion of course learner will be a	able to-		
Sr. No.	Course Outcome	S		Bloom's Level	
COI	Engineering curri	culum to work on practical proble	in Chemical ems.	3-Apply	
CO2	Apply practical e a challenging prob	xperience gained through the in- blem in Chemical Engineering fie	depth study of eld.	3- Apply	
CO3	Design solutions for innovative problems using engineering 6- Create skills.				
CO4	Acquire presentation skills, communication skills through report 4- Analyze writing.				
CO5	Acquaint the team working skills for a successful professional 4- Analyze career.				
		Expected Working areas:			
Project the kno and cor of desi Enginee the duly the wor	phase 1 is an integravely be acquired by attribute towards the gning and building ering where the study certified report or k by the concerned	aral part of the project work. The y the student during the graduation is needs of the society. The project ag complete system or subsysted dent likes to acquire specialized a f project work in standard forma guide and head of the Departmer	project work sl on and preferabl aims to provide ems in the fiel skills. The stude t for satisfactor nt/Institute.	hall be based on y it should meet e an opportunity ld of Chemical ent shall prepare y completion of	
		Guidelines for term work assess	ment:		
 Group Size: The student shall carry the project work individually or by a group of students. Maximum group size shall be 4 students. Projects selected should meet and contribute towards the needs of the industry and society. Selection and approval of topic: Topic should be related to real life application in the field of Chemical engineering. The topic may be based on: Investigation of the latest development in a specific. 					
 The field field / world Mode by in Chem Interd project 	of Chemical engine king model of Cher elling, Simulation, I dustries etc. with hical engineering m lisciplinary project cts shall be conduct	eering, The investigation of the latering, The investigation of pract mical engineering equipment/ Soft Material Processing, solving real the justification for techniques ay be allowed. s should be encouraged. The e ed independently in respective de	cical problem in ftware based pr time engineerin used / any topi examination of partments.	manufacture and cojects related to g problems faced c in the field of Interdisciplinary	

- The term work assessment of Project Phase I shall be based on Innovative Idea of selected project, literature survey, depth of understanding, applications, individual contributions, progress review, presentation, project report, timely completion of work.
- The department should prepare project planner and should follow accordingly.
- Progress reviews should be conducted periodically by forming evaluation committee at department level.
- The project report must undergo by plagiarism check and the similarity index must be less than 15%. The plagiarism report should be included in the project report.
- A certified copy of report is required to be presented to evaluation committee at the time of examination.